Towards Understanding Nanoscale and Mesoscale Order in Organic Semiconductors


Book Description

Organic semiconductors are emerging as promising semiconductor materials for a wide range of electronic and electrochemical device applications including displays, electronics, solar cells, chemical sensors, and energy storage. Recent advances in molecular structure-property relationships and backbone and side chain engineering have enabled significant progress in improving their charge transport properties and carrier mobilities, which are now competitive with amorphous silicon. Moreover, over the past few years, a series of conjugated polymers with polar side chains have been developed to operate as mixed ionic/electronic conductors in aqueous media. Despite these advances, an understanding of the multiscale mechanism for ionic and electronic charge transport remains elusive, limiting further progress in materials development. Charge transport requires continuous coupling across all length scales (i.e., atomic to mesoscale). Understanding the local environments where ionic and electronic charges reside in a semiconducting polymer and the energetic landscape for charge transport are key questions to address in the search for designing better materials. The focus of this dissertation has been on attempting to improve our understanding of the relationship between structure and its impact on macroscopic properties. In this dissertation, I present several methods to characterize the structure of semiconducting polymers and discuss the role of structure on optoelectronic and electrochemical properties. In the first part of this dissertation, I present a series of methods to extract and measure the nanoscale and mesoscale order of semiconducting polymers using low-dose, high-resolution transmission electron microscopy images and data analytics. These results showcase the applicability of developing novel methods to characterize the rich, complex mesoscale structure of conjugated polymers with unprecedented detail. In the second part of this dissertation, I combine a series of electrochemical and structural characterization techniques to study polymer volumetric charging in a series of aqueous electrolytes. These novel semiconducting polymers have been specifically designed for electrochemical device applications that leverage ionic/electronic charge transport. This work elucidates complex polymer- and electrolyte- dependent structure-property relationships, which will help further developments on the rational design and understanding of this new family of materials. Overall, these studies suggest design principles to continue to advance the field of organic electronics.




Relating Nanoscale Structure to Electronic Function in Organic Semiconductors Using Time-resolved Spectroscopy


Book Description

Molecular packing arrangements at the nanoscale level significantly contribute to the ultimate photophysical properties of organic semiconducting materials used in solar energy conversion applications. Understanding their precise structure-function relationships will provide insights that can lead to chemical and structural design rules for the next generation of organic solar cell materials. In this work, two major classes of materials were investigated: Singlet fission sensitizers and semiconducting block-copolymers. By exploiting chemical design and film processing techniques, a variety of controllable nanoscale structures could be developed and related to their subsequent photophysical properties, including triplet and charge transport. Time-resolved optical spectroscopies, including both absorption and emission techniques, were used to measure the population dynamics of excited states and charge carriers following photoexcitation of the semiconducting materials. Singlet fission, an exciton multiplication reaction that promises to boost solar cell efficiency by overcoming thermalization loss, has been characterized in several organic molecules. If the energetics are such that the excited state singlet energy is at least twice the triplet energy, then a singlet exciton may split into two triplet excitons through an intermolecular energy-sharing process. The thin film structure of a model singlet fission compound was exploited by modulating its crystallinity and controlling polymorphism. A combination of visible, near-infrared, and mid-infrared transient absorption spectroscopies were used to investigate the precise singlet fission reaction mechanism. It was determined that the reaction intermediates consist of bound triplet pairs that must physically separate in order to complete the reaction, which results in multiplied, independent triplet excitations. Triplet transfer, which is modulated by molecular packing arrangements that control orbital overlap coupling, was found to determine the efficacy of triplet pair separation. Furthermore, the formation of these independent triplets was found to occur on longer (picosecond) timescales than previously believed, indicating that any kinetically competing relaxation processes, such as internal conversion, need to be controlled. Last, it was found that the diffusion of the multiplied triplet excitons, and thus their harvestability in devices, is highly influenced by the crystallinity of the material. In particular, the presence of even a small amount of contaminant amorphous phase was determined to be detrimental to the ultimate triplet diffusion length. Future research directions are outlined, which will be used to develop further chemical and structural design rules for the next generation of singlet fission chromophores. Semiconducting block-copolymers, because of their natural tendency to self-assemble into ordered nanoscale structures, offer an appealing strategy for controlling phase segregation between the hole and electron transport materials in organic solar cells. Such phase segregation is important for both ensuring efficient conversion of the photogenerated excitons into charge carriers, and for creating percolation pathways for efficient transport of the charges to the device electrodes. Time-resolved mid-infrared spectroscopy was developed for monitoring charge recombination kinetics in a series of block-copolymer and polymer blend films possessing distinct, controlled nanoscale morphologies. In addition to explaining previous work that correlated film structure to device efficiency, it was revealed how the covalent linkage in block-copolymers can be carefully designed to prevent rapid recombination losses. Furthermore, novel solution-phase systems of block-copolymer aggregates and nanoparticles were developed for future fundamental spectroscopic work. Future studies promise to explain precisely how polymer chain organization, including intrachain and interchain interactions, governs their ultimate charge photogeneration and transport properties in solar cells.




Nanoscale Interface For Organic Electronics


Book Description

The scope of this book will be focused on the interface issues and problems in organic materials as electronic device applications. The organic material electronics is a rapidly progressing field for potential applications in flexible field effect transistors, plastic solar cells, organic luminescent devices, etc.However, the performance of these organic devices is still not sufficient. To enhance the understanding and practical applications of organic devices, we need to understand the fundamental organic device physics which is somewhat different from the conventional inorganic device physics. This book will discuss the detailed progress in these topics.




Wspc Reference On Organic Electronics, The: Organic Semiconductors (In 2 Volumes)


Book Description

This 2-volume set provides the reader with a basic understanding of the foundational concepts pertaining to the design, synthesis, and applications of conjugated organic materials used as organic semiconductors, in areas including organic photovoltaic devices, light-emitting diodes, field-effect transistors, spintronics, actuation, bioelectronics, thermoelectrics, and nonlinear optics.While there are many monographs in these various areas, the emphasis here is both on the fundamental chemistry and physics concepts underlying the field of organic semiconductors and on how these concepts drive a broad range of applications. This makes the volumes ideal introductory textbooks in the subject. They will thus offer great value to both junior and senior scientists working in areas ranging from organic chemistry to condensed matter physics and materials science and engineering.Number of Illustrations and Tables: 168 b/w illus., 242 colour illus., 13 tables.




Mesoscale Chemistry


Book Description

In the last few decades great strides have been made in chemistry at the nanoscale, where the atomic granularity of matter and the exact positions of individual atoms are key determinants of structure and dynamics. Less attention, however, has been paid to the mesoscale-it is at this scale, in the range extending from large molecules (10 nm) through viruses to eukaryotic cells (10 microns), where interesting ensemble effects and the functionality that is critical to macroscopic phenomenon begins to manifest itself and cannot be described by laws on the scale of atoms and molecules alone. To further explore how knowledge about mesoscale phenomena can impact chemical research and development activities and vice versa, the Chemical Sciences Roundtable of the National Research Council convened a workshop on mesoscale chemistry in November 2014. With a focus on the research on chemical phenomena at the mesoscale, participants examined the opportunities that utilizing those behaviors can have for developing new catalysts, adding new functionality to materials, and increasing our understanding of biological and interfacial systems. The workshop also highlighted some of the challenges for analysis and description of mesoscale structures. This report summarizes the presentations and discussion of the workshop.




Nanoscale Templating and Self-assembly of Organic Semiconductors


Book Description

Improvements in organic electronic materials could lead to novel device applications, ranging from large-area, flexible displays to light weight, plastic electronics. Progress on these applications would benefit from development of low-cost, aqueous, solution-based fabrication techniques for organic semiconductors. Supramolecular self-assembly enables molecules to organize in complex structures through non-covalent interactions. The nanoscale structure and aggregation of organic semiconductors influence conductivity, charge mobility and luminescence. We developed three approaches to enhance the performance of organic semiconductors through molecular self-assembly. The first uses a liquid crystalline (LC) template to mediate electrochemical polymerization of poly(3,4-ethyldioxythiophene) (PEDOT), a conducting polymer used for hole injection in organic light emitting diodes (OLED). Monomers were polymerized in the cylindrical, hydrophobic cores of a hexagonal, lyotropic LC formed by a non-ionic amphiphile in water, The templated, conducting polymer films exhibited anisotropic optical properties and increased conductivity as a direct result of the nanoscale, self-organized structure of the template. Another approach was used to control molecular order by preparing organic semiconductors that are themselves liquid crystalline. We developed a novel series of triblock oligo(phenylene vinylene) (OPV) amphiphiles that form thermotropic and lyotropic LC mesophases. The self-organized, layered structure of these mesophases influences aggregation of OPV, enhancing fluorescence in the liquid crystalline state compared with disordered films. These OPV-amphiphiles are the first example of a water-soluble oligo(phenylene vinylene) that can self-organize into aligned, well-ordered, highly fluorescent films. In a third system, a triblock, dendron rod-coil (DRC) molecule containing a quaterthiophene segment was prepared and its self-assembly and electronic properties investigated. In non-polar solvents, this molecule formed high aspect ratio, supramolecular nanowires containing stacked oligo(thiophene) segments. These self-assembled nanowires formed conductive films that were aligned by an electric field. Using these three systems, we demonstrate how nanoscale templating and self-assembly can enhance the performance of thiophene- and phenylene vinylene-based organic semiconductors.




Mesoscale Chemistry


Book Description

In the last few decades great strides have been made in chemistry at the nanoscale, where the atomic granularity of matter and the exact positions of individual atoms are key determinants of structure and dynamics. Less attention, however, has been paid to the mesoscale--it is at this scale, in the range extending from large molecules (10 nm) through viruses to eukaryotic cells (10 microns), where interesting ensemble effects and the functionality that is critical to macroscopic phenomenon begins to manifest itself and cannot be described by laws on the scale of atoms and molecules alone. To further explore how knowledge about mesoscale phenomena can impact chemical research and development activities and vice versa, the Chemical Sciences Roundtable of the National Research Council convened a workshop on mesoscale chemistry in November 2014. With a focus on the research on chemical phenomena at the mesoscale, participants examined the opportunities that utilizing those behaviors can have for developing new catalysts, adding new functionality to materials, and increasing our understanding of biological and interfacial systems. The workshop also highlighted some of the challenges for analysis and description of mesoscale structures. This report summarizes the presentations and discussion of the workshop.










The (Non-)Local Density of States of Electronic Excitations in Organic Semiconductors


Book Description

This book focuses on the microscopic understanding of the function of organic semiconductors. By tracing the link between their morphological structure and electronic properties across multiple scales, it represents an important advance in this direction. Organic semiconductors are materials at the interface between hard and soft matter: they combine structural variability, processibility and mechanical flexibility with the ability to efficiently transport charge and energy. This unique set of properties makes them a promising class of materials for electronic devices, including organic solar cells and light-emitting diodes. Understanding their function at the microscopic scale – the goal of this work – is a prerequisite for the rational design and optimization of the underlying materials. Based on new multiscale simulation protocols, the book studies the complex interplay between molecular architecture, supramolecular organization and electronic structure in order to reveal why some materials perform well – and why others do not. In particular, by examining the long-range effects that interrelate microscopic states and mesoscopic structure in these materials, the book provides qualitative and quantitative insights into e.g. the charge-generation process, which also serve as a basis for new optimization strategies.