Advances in Animal Genomics


Book Description

Advances in Animal Genomics provides an outstanding collection of integrated strategies involving traditional and modern - omics (structural, functional, comparative and epigenomics) approaches and genomics-assisted breeding methods which animal biotechnologists can utilize to dissect and decode the molecular and gene regulatory networks involved in the complex quantitative yield and stress tolerance traits in livestock. Written by international experts on animal genomics, this book explores the recent advances in high-throughput, next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches which have enabled to produce huge genomic and transcriptomic resources globally on a genome-wide scale. This book is an important resource for researchers, students, educators and professionals in agriculture, veterinary and biotechnology sciences that enables them to solve problems regarding sustainable development with the help of current innovative biotechnologies. - Integrates basic and advanced concepts of animal biotechnology and presents future developments - Describes current high-throughput next-generation whole genome and transcriptome sequencing, array-based genotyping, and modern bioinformatics approaches for sustainable livestock production - Illustrates integrated strategies to dissect and decode the molecular and gene regulatory networks involved in complex quantitative yield and stress tolerance traits in livestock - Ensures readers will gain a strong grasp of biotechnology for sustainable livestock production with its well-illustrated discussion




Animal Genomics


Book Description

This publication provides an update on the current status of gene maps in different livestock and pet/companion animal species. The findings summarized in species specific commentaries and original articles testify the rapid advances made in the field of animal genomics. Of significant interest is the fact that current investigations are providing headways for two important and exciting research fronts: targeted high-resolution mapping leading to the application of genomic information in addressing questions of economic and biological significance in animals, and the initiation of whole genome sequencing projects for some of the animal species. Like in humans and mice, this will set the stage for a new level of research and real time complex analysis of the genomes of these species. Animal Genomics signifies the beginning of a new era in this field and celebrates the achievements of the past 20 years of genomics research. It will be of special interest to researchers involved in genome analysis - both gross chromosomal as well as molecular - in various animal species, and to comparative and evolutionary geneticists.




In the Light of Evolution


Book Description

The Arthur M. Sackler Colloquia of the National Academy of Sciences address scientific topics of broad and current interest, cutting across the boundaries of traditional disciplines. Each year, four or five such colloquia are scheduled, typically two days in length and international in scope. Colloquia are organized by a member of the Academy, often with the assistance of an organizing committee, and feature presentations by leading scientists in the field and discussions with a hundred or more researchers with an interest in the topic. Colloquia presentations are recorded and posted on the National Academy of Sciences Sackler colloquia website and published on CD-ROM. These Colloquia are made possible by a generous gift from Mrs. Jill Sackler, in memory of her husband, Arthur M. Sackler.




Population Genomics


Book Description

Population genomics has revolutionized various disciplines of biology including population, evolutionary, ecological and conservation genetics, plant and animal breeding, human health, medicine and pharmacology by allowing to address novel and long-standing questions with unprecedented power and accuracy. It employs large-scale or genome-wide genetic information and bioinformatics to address various fundamental and applied aspects in biology and related disciplines, and provides a comprehensive genome-wide perspective and new insights that were not possible before. These advances have become possible due to the development of new and low-cost sequencing and genotyping technologies and novel statistical approaches and software, bioinformatics tools, and models. Population genomics is tremendously advancing our understanding the roles of evolutionary processes, such as mutation, genetic drift, gene flow, and natural selection, in shaping up genetic variation at individual loci and across the genome and populations; improving the assessment of population genetic parameters or processes such as adaptive evolution, effective population size, gene flow, admixture, inbreeding and outbreeding depression, demography, and biogeography; resolving evolutionary histories and phylogenetic relationships of extant, ancient and extinct species; understanding the genomic basis of fitness, adaptation, speciation, complex ecological and economically important traits, and disease and insect resistance; facilitating forensics, genetic medicine and pharmacology; delineating conservation genetic units; and understanding the genetic effects of resource management practices, and assisting conservation and sustainable management of genetic resources. This Population Genomics book discusses the concepts, approaches, applications and promises of population genomics in addressing most of the above fundamental and applied crucial aspects in a variety of organisms from microorganisms to humans. The book provides insights into a range of emerging population genomics topics including population epigenomics, landscape genomics, seascape genomics, paleogenomics, ecological and evolutionary genomics, biogeography, demography, speciation, admixture, colonization and invasion, genomic selection, and plant and animal domestication. This book fills a vacuum in the field and is expected to become a primary reference in Population Genomics world-wide.




Paleogenomics


Book Description

Advances in genome-scale DNA sequencing technologies have revolutionized genetic research on ancient organisms, extinct species, and past environments. When it is recoverable after hundreds or thousands of years of unintended preservation, “ancient DNA” (or aDNA) is often highly degraded, necessitating specialized handling and analytical approaches. Paleogenomics defines the field of reconstructing and analyzing the genomes of historic or long-dead organisms, most often through comparison with modern representatives of the same or similar species. The opportunity to isolate and study paleogenomes has radically transformed many fields, spanning biology, anthropology, agriculture, and medicine. Examples include understanding evolutionary relationships of extinct species known only from fossils, the domestication of plants and animals, and the evolution and geographical spread of certain pathogens. This pioneering book presents a snapshot view of the history, current status, and future prospects of paleogenomics, taking a broad viewpoint that covers a range of topics and organisms to provide an up-to-date status of the applications, challenges, and promise of the field. This book is intended for a variety of readerships, including upper-level undergraduate and graduate students, professionals and experts in the field, as well as anyone excited by the extraordinary insights that paleogenomics offers.




Advances in Farm Animal Genomic Resources


Book Description

The history of livestock started with the domestication of their wild ancestors: a restricted number of species allowed to be tamed and entered a symbiotic relationship with humans. In exchange for food, shelter and protection, they provided us with meat, eggs, hides, wool and draught power, thus contributing considerably to our economic and cultural development. Depending on the species, domestication took place in different areas and periods. After domestication, livestock spread over all inhabited regions of the earth, accompanying human migrations and becoming also trade objects. This required an adaptation to different climates and varying styles of husbandry and resulted in an enormous phenotypic diversity. Approximately 200 years ago, the situation started to change with the rise of the concept of breed. Animals were selected for the same visible characteristics, and crossing with different phenotypes was reduced. This resulted in the formation of different breeds, mostly genetically isolated from other populations. A few decades ago, selection pressure was increased again with intensive production focusing on a limited range of types and a subsequent loss of genetic diversity. For short-term economic reasons, farmers have abandoned traditional breeds. As a consequence, during the 20th century, at least 28% of farm animal breeds became extinct, rare or endangered. The situation is alarming in developing countries, where native breeds adapted to local environments and diseases are being replaced by industrial breeds. In the most marginal areas, farm animals are considered to be essential for viable land use and, in the developing world, a major pathway out of poverty. Historic documentation from the period before the breed formation is scarce. Thus, reconstruction of the history of livestock populations depends on archaeological, archeo-zoological and DNA analysis of extant populations. Scientific research into genetic diversity takes advantage of the rapid advances in molecular genetics. Studies of mitochondrial DNA, microsatellite DNA profiling and Y-chromosomes have revealed details on the process of domestication, on the diversity retained by breeds and on relationships between breeds. However, we only see a small part of the genetic information and the advent of new technologies is most timely in order to answer many essential questions. High-throughput single-nucleotide polymorphism genotyping is about to be available for all major farm animal species. The recent development of sequencing techniques calls for new methods of data management and analysis and for new ideas for the extraction of information. To make sense of this information in practical conditions, integration of geo-environmental and socio-economic data are key elements. The study and management of farm animal genomic resources (FAnGR) is indeed a major multidisciplinary issue. The goal of the present Research Topic was to collect contributions of high scientific quality relevant to biodiversity management, and applying new methods to either new genomic and bioinformatics approaches for characterization of FAnGR, to the development of FAnGR conservation methods applied ex-situ and in-situ, to socio-economic aspects of FAnGR conservation, to transfer of lessons between wildlife and livestock biodiversity conservation, and to the contribution of FAnGR to a transition in agriculture (FAnGR and agro-ecology).




Animal Evolution


Book Description

Animal life, now and over the past half billion years, is incredibly diverse. Describing and understanding the evolution of this diversity of body plans - from vertebrates such as humans and fish to the numerous invertebrate groups including sponges, insects, molluscs, and the many groups of worms - is a major goal of evolutionary biology. In this book, a group of leading researchers adopt a modern, integrated approach to describe how current molecular genetic techniques and disciplines as diverse as palaeontology, embryology, and genomics have been combined, resulting in a dramatic renaissance in the study of animal evolution. The last decade has seen growing interest in evolutionary biology fuelled by a wealth of data from molecular biology. Modern phylogenies integrating evidence from molecules, embryological data, and morphology of living and fossil taxa provide a wide consensus of the major branching patterns of the tree of life; moreover, the links between phenotype and genotype are increasingly well understood. This has resulted in a reliable tree of relationships that has been widely accepted and has spawned numerous new and exciting questions that require a reassessment of the origins and radiation of animal life. The focus of this volume is at the level of major animal groups, the morphological innovations that define them, and the mechanisms of change to their embryology that have resulted in their evolution. Current research themes and future prospects are highlighted including phylogeny reconstruction, comparative developmental biology, the value of different sources of data and the importance of fossils, homology assessment, character evolution, phylogeny of major groups of animals, and genome evolution. These topics are integrated in the light of a 'new animal phylogeny', to provide fresh insights into the patterns and processes of animal evolution. Animal Evolution provides a timely and comprehensive statement of progress in the field for academic researchers requiring an authoritative, balanced and up-to-date overview of the topic. It is also intended for both upper level undergraduate and graduate students taking courses in animal evolution, molecular phylogenetics, evo-devo, comparative genomics and associated disciplines.




Allele Mining for Genomic Designing of Oilseed Crops


Book Description

This book deliberates on the concept, strategies, tools, and techniques of allele mining in oilseed crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in global germplasm collections, specifically consisting of wild allied species and local landraces for almost all major crops, have facilitated allele mining. The development of advanced genomic techniques, including PCR-based allele priming and Eco-TILLING-based allele mining, is now widely used for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and with genome plasticity to adapt to climate change scenarios. All these concepts and strategies, along with precise success stories, are presented in the chapters dedicated to the major oilseed crops. 1. This is the first book on the novel strategy of allele mining in oilseed crops for precise breeding. 2. This book presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources. 3. This book depicts case studies of PCR-based allele priming and Eco-TILLING based allele mining. 4. This book elaborates on gene discovery and gene prediction in major oilseed crops. This book will be useful to students and faculties in various plant science disciplines, including genetics, genomics, molecular breeding, agronomy, and bioinformatics; scientists in seed industries; and policymakers and funding agencies interested in crop improvement.




Allele Mining for Genomic Designing of Cereal Crops


Book Description

This book deliberates on the concept, strategies, tools, and techniques of allele mining in cereal crops and its application potential in genome elucidation and improvement, including studying allele evolution, discovery of superior alleles, discerning new haplotypes, assessment of intra- and interspecific similarity, and studies of gene expression and gene prediction. Available gene pools in global germplasm collections specifically consisting of wild allied species and local landraces for almost all major crops have facilitated allele mining. Development of advanced genomic techniques including PCR-based allele priming and Eco-TILLING-based allele mining are being widely used now for mining superior alleles. Allele's discovery has become more relevant now for employing molecular breeding to develop designed crop varieties matching consumer needs and with genome plasticity to adapt the climate change scenarios. All these concepts and strategies along with precise success stories are presented in the chapters dedicated to the major cereal crops. The first book on the novel strategy of allele mining in cereal crops for precise breeding Presents genomic strategies for mining superior alleles underlying agronomic traits from genomic resources Depicts case studies of PCR-based allele priming and Eco-Tilling-based allele mining Elaborates on gene discovery and gene prediction in major cereal crops This book will be useful to the students and faculties in various plant science disciplines including genetics, genomics, molecular breeding, agronomy, and bioinformatics; the scientists in seed industries; and the policymakers and funding agencies interested in crop improvement.