A Traffic Signal Control Algorithm for Emergency Vehicles


Book Description

Signal preemption disrupts normal traffic signal to allow emergency vehicles to pass through the intersection more safely and quickly. In medical emergency situations, EVP (Emergency Vehicle Preemption) offers a faster response to the sufferer which improves the chance of survival. Despite this lifesaving advantage, conventional preemption has some problems which need more attention. Two important issues are increased delay of overall traffic due to preemption and absence of prioritization of conflicting preemption requests. This thesis presents a traffic signal control algorithm that addresses the above. We have used TSP (Transit Signal Priority) techniques to improve the EVP system. TSP is a proven strategy to provide a better quality public transit operation in urban areas. Our proposed algorithm adjusts signal phases using TSP techniques to serve an emergency vehicle. We consider both single and multiple simultaneous emergency vehicle requests. TSP techniques help us to alleviate the impact on general traffic. For multiple emergency vehicle requests, a branch and bound algorithm is developed that prioritizes among conflicting requests. Experiments have been conducted using the VISSIM microscopic traffic simulator. Results show that the proposed traffic control algorithm reduces overall traffic delay by up to 8% compared to conventional EVP system.







Traffic Signal Systems


Book Description










Emergency Vehicle Safety Initiative


Book Description

From Book's Introduction: As traffic volume increases and the highway and interstate system becomes more complex, emergency responders face a growing risk to their personal safety while managing and working at highway incidents. The purpose of this report is to identify practices that have the potential to decrease that risk, as well as to reduce the number of injuries and deaths that occur while responding to and returning from incidents.




Evaluation of Pre-emption and Transition Strategies for Northern Virginia Smart Traffic Signal Systems (NVSTSS)


Book Description

Modern traffic signal control systems provide emergency vehicle preemption (EVP) capabilities by utilizing advanced sensors and communication technologies. EVP strategies are widely implemented by urban transportation management agencies. One of the challenges of implementing EVP under coordinated-actuated signal systems is selecting the best coordination recovery strategy at the end of preemption such that disruptions to the normal traffic signal operations are minimized. Similarly, time-of-day (TOD) traffic operations also produce such disruptions while transitioning between TOD modes and require returning to coordination. This report presents the evaluation results of various EVP recovery and TOD transition strategies in an urban corridor including four coordinated-actuated signals along Lee Jackson Memorial Highway in Chantilly, Virginia. Since field testing of various preemption and TOD transition strategies is impractical, the study was performed using hardware-in-the-loop simulation, which consisted of a well-calibrated VISSIM microscopic simulation model, four traffic controllers, and four controller interface devices. The study results showed that advanced controllers (e.g., 2070 and ASC/3) have advantages over the 170 controller for the EVP recovery strategies, while the 170 controller's TOD transition strategies outperformed those of the newer controllers.