Transacting Functions of Human Retroviruses


Book Description

The coding domains of simple retrovirus genomes direct the synthesis of virion proteins. Complex retroviral genomes generate in addition to virion proteins regulatory transacting proteins that are translated from multiple spliced messenger RNAs and fulfill important functions in the virus life cycle. All human retroviruses have such complex genomes. The transacting proteins of these pathogens are attractive targets for therapeutic intervention because they are viral specific, are essential for efficient virus replication and may be mediators of viral pathogenicity. In summarizing the current knowledge on the regulatory transacting proteins of human retroviruses this volume makes an important contribution toward the control of virus disease.




Retroviruses


Book Description

Leading scientists in the field review the genomics, molecular biology and pathogenesis of these important viruses, comprehensively covering all the recent advances.




The Human Retroviruses


Book Description

This book presents twenty-four tightly focused reviews on the biology, molecular biology, pathology, and epidemiology of the human retroviruses, particularly HIV and HTLV (Types I and II), as well as animal model systems (simian retroviruses, STLV and SIV, and mouse models). Editor Robert C. Gallo is recognized as a co-discoverer of the AIDS virus.




Plague


Book Description

On July 22, 2009, a special meeting was held with twenty-four leading scientists at the National Institutes of Health to discuss early findings that a newly discovered retrovirus was linked to chronic fatigue syndrome (CFS), prostate cancer, lymphoma, and eventually neurodevelopmental disorders in children. When Dr. Judy Mikovits finished her presentation the room was silent for a moment, then one of the scientists said, “Oh my God!” The resulting investigation would be like no other in science. For Dr. Mikovits, a twenty-year veteran of the National Cancer Institute, this was the midpoint of a five-year journey that would start with the founding of the Whittemore-Peterson Institute for Neuro-Immune Disease at the University of Nevada, Reno, and end with her as a witness for the federal government against her former employer, Harvey Whittemore, for illegal campaign contributions to Senate Majority Leader Harry Reid. On this journey Dr. Mikovits would face the scientific prejudices against CFS, wander into the minefield that is autism, and through it all struggle to maintain her faith in God and the profession to which she had dedicated her life. This is a story for anybody interested in the peril and promise of science at the very highest levels in our country.




Human Herpesviruses


Book Description

This comprehensive account of the human herpesviruses provides an encyclopedic overview of their basic virology and clinical manifestations. This group of viruses includes human simplex type 1 and 2, Epstein–Barr virus, Kaposi's Sarcoma-associated herpesvirus, cytomegalovirus, HHV6A, 6B and 7, and varicella-zoster virus. The viral diseases and cancers they cause are significant and often recurrent. Their prevalence in the developed world accounts for a major burden of disease, and as a result there is a great deal of research into the pathophysiology of infection and immunobiology. Another important area covered within this volume concerns antiviral therapy and the development of vaccines. All these aspects are covered in depth, both scientifically and in terms of clinical guidelines for patient care. The text is illustrated generously throughout and is fully referenced to the latest research and developments.




Disease Control Priorities, Third Edition (Volume 6)


Book Description

Infectious diseases are the leading cause of death globally, particularly among children and young adults. The spread of new pathogens and the threat of antimicrobial resistance pose particular challenges in combating these diseases. Major Infectious Diseases identifies feasible, cost-effective packages of interventions and strategies across delivery platforms to prevent and treat HIV/AIDS, other sexually transmitted infections, tuberculosis, malaria, adult febrile illness, viral hepatitis, and neglected tropical diseases. The volume emphasizes the need to effectively address emerging antimicrobial resistance, strengthen health systems, and increase access to care. The attainable goals are to reduce incidence, develop innovative approaches, and optimize existing tools in resource-constrained settings.




Immunology of HIV Infection


Book Description

Leading experts provide the only comprehensive book examining all aspects of immune response and immune-based treatments for HIV infection. Contributions, divided into three sections, discuss basic mechanisms, immunopathogenesis of HIV infection, and immune-based therapies. Researchers thoroughly review vaccine-including prospects of T cell vaccine-and gene therapy for HIV infection. Additional topics include organization of HIV genes, the role of co-receptors in signaling of lymphocytes, and biological response modifiers. This reference is designed for basic and clinical researchers, internists, pediatricians, infectious disease specialists, neuropathologists, oncologists, and rheumatologists.




Recoding: Expansion of Decoding Rules Enriches Gene Expression


Book Description

The literature on recoding is scattered, so this superb book ?lls a need by prov- ing up-to-date, comprehensive, authoritative reviews of the many kinds of recoding phenomena. Between 1961 and 1966 my colleagues and I deciphered the genetic code in Escherichia coli and showed that the genetic code is the same in E. coli, Xenopus laevis, and guinea pig tissues. These results showed that the code has been c- served during evolution and strongly suggested that the code appeared very early during biological evolution, that all forms of life on earth descended from a c- mon ancestor, and thus that all forms of life on this planet are related to one another. The problem of biological time was solved by encoding information in DNA and retrieving the information for each new generation, for it is easier to make a new organism than it is to repair an aging, malfunctioning one. Subsequently, small modi?cations of the standard genetic code were found in certain organisms and in mitochondria. Mitochondrial DNA only encodes about 10–13 proteins, so some modi?cations of the genetic code are tolerated that pr- ably would be lethal if applied to the thousands of kinds of proteins encoded by genomic DNA.




Viruses


Book Description

Discusses the enormous scientific and medical contributions that have come from the field of virology.




A Guide to Human Gene Therapy


Book Description

1. Non-viral gene therapy / Sean M. Sullivan -- 2. Adenoviral vectors / Stuart A. Nicklin and Andrew H. Baker -- 3. Retroviral vectors and integration analysis / Cynthia C. Bartholomae [und weitere] -- 4. Lentiviral vectors / Janka Matrai, Marinee K.L. Chuah and Thierry VandenDriessche -- 5. Herpes simplex virus vectors / William F. Goins [und weitere] -- 6. Adeno-Associated Viral (AAV) vectors / Nicholas Muzyczka -- 7. Regulatory RNA in gene therapy / Alfred. S. Lewin -- 8. DNA integrating vectors (Transposon, Integrase) / Lauren E. Woodard and Michele P. Calos -- 9. Homologous recombination and targeted gene modification for gene therapy / Matthew Porteus -- 10. Gene switches for pre-clinical studies in gene therapy / Caroline Le Guiner [und weitere] -- 11. Gene therapy for central nervous system disorders / Deborah Young and Patricia A. Lawlor -- 12. Gene therapy of hemoglobinopathies / Angela E. Rivers and Arun Srivastava -- 13. Gene therapy for primary immunodeficiencies / Aisha Sauer, Barbara Cassani and Alessandro Aiuti -- 14. Gene therapy for hemophilia / David Markusic, Babak Moghimi and Roland Herzog -- 15. Gene therapy for obesity and diabetes / Sergei Zolotukhin and Clive H. Wasserfall -- 16. Gene therapy for Duchenne muscular dystrophy / Takashi Okada and Shin'ichi Takeda -- 17. Cancer gene therapy / Kirsten A.K. Weigel-Van Aken -- 18. Gene therapy for autoimmune disorders / Daniel F. Gaddy, Melanie A. Ruffner and Paul D. Robbins -- 19. Gene therapy for inherited metabolic storage diseases / Cathryn Mah -- 20. Retinal diseases / Shannon E. Boye, Sanford L. Boye and William W. Hauswirth -- 21. A brief guide to gene therapy treatments for pulmonary diseases / Ashley T. Martino, Christian Mueller and Terence R. Flotte -- 22. Cardiovascular disease / Darin J. Falk, Cathryn S. Mah and Barry J. Byrne