Transcendental Dynamics and Complex Analysis


Book Description

Presenting papers by researchers in transcendental dynamics and complex analysis, this exciting new and modern book is written in honor of Noel Baker, who laid the foundations of transcendental complex dynamics. The papers describe the state of the art in this subject, with new results on completely invariant domains, wandering domains, the exponential parameter space, and normal families. The inclusion of comprehensive survey articles on dimensions of Julia sets, buried components of Julia sets, Baker domains, Fatou components of functions of small growth, and ergodic theory of transcendental meromorphic functions means this is essential reading for students and researchers in complex dynamics and complex analysis.




Early Days in Complex Dynamics


Book Description

The theory of complex dynamics, whose roots lie in 19th-century studies of the iteration of complex function conducted by Koenigs, Schoder, and others, flourished remarkably during the first half of the 20th century, when many of the central ideas and techniques of the subject developed. This book paints a robust picture of the field of complex dynamics between 1906 and 1942 through detailed discussions of the work of Fatou, Julia, Siegel, and several others.




Holomorphic Dynamical Systems


Book Description

The theory of holomorphic dynamical systems is a subject of increasing interest in mathematics, both for its challenging problems and for its connections with other branches of pure and applied mathematics. A holomorphic dynamical system is the datum of a complex variety and a holomorphic object (such as a self-map or a vector ?eld) acting on it. The study of a holomorphic dynamical system consists in describing the asymptotic behavior of the system, associating it with some invariant objects (easy to compute) which describe the dynamics and classify the possible holomorphic dynamical systems supported by a given manifold. The behavior of a holomorphic dynamical system is pretty much related to the geometry of the ambient manifold (for instance, - perbolic manifolds do no admit chaotic behavior, while projective manifolds have a variety of different chaotic pictures). The techniques used to tackle such pr- lems are of variouskinds: complexanalysis, methodsof real analysis, pluripotential theory, algebraic geometry, differential geometry, topology. To cover all the possible points of view of the subject in a unique occasion has become almost impossible, and the CIME session in Cetraro on Holomorphic Dynamical Systems was not an exception.




Complex Dynamics


Book Description

Complex Dynamics: Families and Friends features contributions by many of the leading mathematicians in the field, such as Mikhail Lyubich, John Milnor, Mitsuhiro Shishikura, and William Thurston. Some of the chapters, including an introduction by Thurston to the general subject of complex dynamics, are classic manuscripts that were never published




Quasiconformal Surgery in Holomorphic Dynamics


Book Description

A comprehensive introduction to quasiconformal surgery in holomorphic dynamics. Contains a wide variety of applications and illustrations.




Dense Sphere Packings


Book Description

The definitive account of the recent computer solution of the oldest problem in discrete geometry.







Surveys in Combinatorics 2019


Book Description

Eight articles provide a valuable survey of the present state of knowledge in combinatorics.




Complexity Science


Book Description

Complexity science is the study of systems with many interdependent components. Such systems - and the self-organization and emergent phenomena they manifest - lie at the heart of many challenges of global importance. This book is a coherent introduction to the mathematical methods used to understand complexity, with plenty of examples and real-world applications. It starts with the crucial concepts of self-organization and emergence, then tackles complexity in dynamical systems using differential equations and chaos theory. Several classes of models of interacting particle systems are studied with techniques from stochastic analysis, followed by a treatment of the statistical mechanics of complex systems. Further topics include numerical analysis of PDEs, and applications of stochastic methods in economics and finance. The book concludes with introductions to space-time phases and selfish routing. The exposition is suitable for researchers, practitioners and students in complexity science and related fields at advanced undergraduate level and above.




Finite and Algorithmic Model Theory


Book Description

Surveys of current research in logical aspects of computer science that apply finite and infinite model-theoretic methods.