Signaling Mechanisms Regulating T Cell Diversity and Function


Book Description

T cells play a vital role mediating adaptive immunity, a specific acquired resistance to an infectious agent produced by the introduction of an antigen. There are a variety of T cell types with different functions. They are called T cells, because they are derived from the thymus gland. This volume discusses how T cells are regulated through the operation of signaling mechanisms. Topics covered include positive and negative selection, early events in T cell receptor engagement, and various T cell subsets.




T-Cell Development


Book Description

​This volume provides simple and accessible experiment protocols to explore thymus biology. T-Cell Development: Methods and Protocols is divided into three parts presenting short reviews on T cell development, analysis strategies, protocols for cell preparation, flow cytometry analyses, and multiple aspects of thymocyte biology. As a volume in the highly successful Methods in Molecular Biology series, chapters contain introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible protocols, and tips on troubleshooting and avoiding known pitfalls. Concise and easy-to-use, T-Cell Development: Methods and Protocols aims to ensure successful results in the further study of this vital field.




Transcriptional Control of Lineage Differentiation in Immune Cells


Book Description

Insights into the regulation of immune cell lineage differentiation and specification as well as into the control of lineage integrity, stability and plasticity are of fundamental importance to understanding innate and adaptive immune responses. In this volume, leading experts provide an up-to-date and comprehensive overview of recent advances in the transcriptional control mechanisms and transcription factor networks that regulate these processes in a variety of different immune cell lineages. The chapters cover the regulation of T versus B cell lineage choice, discuss early B cell development and pre-B cell leukemia prevention, address transcriptional control mechanisms during the differentiation, in regulatory T cells and iNKT cells, detail genomic switches in helper cell fate choice and plasticity and highlight the role of the BTB-zinc finger family of transcription factors in T cells. Moreover, the chapters discuss transcriptional networks in DCs, NK cells and in innate lymphoid cells. Together, the reviews illustrate key transcriptional control mechanisms that regulate the development and function of immune cells and demonstrate the impressive advances made over the last decade.




Transcriptional Control of Lineage Differentiation in Immune Cells


Book Description

Insights into the regulation of immune cell lineage differentiation and specification as well as into the control of lineage integrity, stability and plasticity are of fundamental importance to understanding innate and adaptive immune responses. In this volume, leading experts provide an up-to-date and comprehensive overview of recent advances in the transcriptional control mechanisms and transcription factor networks that regulate these processes in a variety of different immune cell lineages. The chapters cover the regulation of T versus B cell lineage choice, discuss early B cell development and pre-B cell leukemia prevention, address transcriptional control mechanisms during the differentiation, in regulatory T cells and iNKT cells, detail genomic switches in helper cell fate choice and plasticity and highlight the role of the BTB-zinc finger family of transcription factors in T cells. Moreover, the chapters discuss transcriptional networks in DCs, NK cells and in innate lymphoid cells. Together, the reviews illustrate key transcriptional control mechanisms that regulate the development and function of immune cells and demonstrate the impressive advances made over the last decade.




Persistent Viral Infections


Book Description

Persistent Viral Infections Edited by Rafi Ahmed Emory Vaccine Center, Atlanta, USA and Irvin S. Y. Chen UCLA School of Medicine, Los Angeles, USA During the past decade much of our attention has focused on diseases associated with viral persistence. Major breakthroughs in immunology, and the advent of molecular approaches to study pathogenesis have increased our understanding of the complex virus-host interactions that occur during viral persistence. Persistent Viral Infections focuses on: * The pathogenesis and immunology of chronic infections * Animal models that provide, or have the potential to provide, major insights This volume will be essential reading for virologists, immunologists, oncologists and neurologists.




Janeway's Immunobiology


Book Description

The Janeway's Immunobiology CD-ROM, Immunobiology Interactive, is included with each book, and can be purchased separately. It contains animations and videos with voiceover narration, as well as the figures from the text for presentation purposes.




Genomic Control Process


Book Description

Genomic Control Process explores the biological phenomena around genomic regulatory systems that control and shape animal development processes, and which determine the nature of evolutionary processes that affect body plan. Unifying and simplifying the descriptions of development and evolution by focusing on the causality in these processes, it provides a comprehensive method of considering genomic control across diverse biological processes. This book is essential for graduate researchers in genomics, systems biology and molecular biology seeking to understand deep biological processes which regulate the structure of animals during development. - Covers a vast area of current biological research to produce a genome oriented regulatory bioscience of animal life - Places gene regulation, embryonic and postembryonic development, and evolution of the body plan in a unified conceptual framework - Provides the conceptual keys to interpret a broad developmental and evolutionary landscape with precise experimental illustrations drawn from contemporary literature - Includes a range of material, from developmental phenomenology to quantitative and logic models, from phylogenetics to the molecular biology of gene regulation, from animal models of all kinds to evidence of every relevant type - Demonstrates the causal power of system-level understanding of genomic control process - Conceptually organizes a constellation of complex and diverse biological phenomena - Investigates fundamental developmental control system logic in diverse circumstances and expresses these in conceptual models - Explores mechanistic evolutionary processes, illuminating the evolutionary consequences of developmental control systems as they are encoded in the genome




The Regulation of Cellular Systems


Book Description

There is no doubt that nowadays, biology benefits greatly from mathematics. In particular, cellular biology is, besides population dynamics, a field where tech niques of mathematical modeling are widely used. This is reflected by the large number of journal articles and congress proceedings published every year on the dynamics of complex cellular processes. This applies, among others, to metabolic control analysis, where the number of articles on theoretical fundamentals and experimental applications has increased for about 15 years. Surprisingly, mono graphs and textbooks dealing with the modeling of metabolic systems are still exceptionally rare. We think that now time is ripe to fill this gap. This monograph covers various aspects of the mathematical description of enzymatic systems, such as stoichiometric analysis, enzyme kinetics, dynamical simulation, metabolic control analysis, and evolutionary optimization. We believe that, at present, these are the main approaches by which metabolic systems can be analyzed in mathematical terms. Although stoichiometric analysis and enzyme kinetics are classical fields tracing back to the beginning of our century, there are intriguing recent developments such as detection of elementary biochemical syn thesis routes and rate laws for the situation of metabolic channeling, which we have considered worth being included. Evolutionary optimization of metabolic systems is a rather new field with promising prospects. Its goal is to elucidate the structure and functions of these systems from an evolutionary viewpoint.




Regulation of Cancer Immune Checkpoints


Book Description

This book systematically reviews the most important findings on cancer immune checkpoints, sharing essential insights into this rapidly evolving yet largely unexplored research topic. The past decade has seen major advances in cancer immune checkpoint therapy, which has demonstrated impressive clinical benefits. The family of checkpoints for mediating cancer immune evasion now includes CTLA-4, PD-1/PD-L1, CD27/CD70, FGL-1/LAG-3, Siglec-15, VISTA (PD-1L)/VSIG3, CD47/SIRPA, APOE/LILRB4, TIGIT, and many others. Despite these strides, most patients do not show lasting remission, and some cancers have been completely resistant to the therapy. The potentially lethal adverse effects of checkpoint blockade represent another major challenge, the mechanisms of which remain poorly understood. Compared to the cancer signaling pathways, such as p53 and Ras, mechanistic studies on immune checkpoint pathways are still in their infancy. To improve the responses to checkpoint blockade therapy and limit the adverse effects, it is essential to understand the molecular regulation of checkpoint molecules in both malignant and healthy cells/tissues. This book begins with an introduction to immune checkpoint therapy and its challenges, and subsequently describes the regulation of checkpoints at different levels. In closing, it discusses recent therapeutic developments based on mechanistic findings, and outlines goals for future translational studies. The book offers a valuable resource for researchers in the cancer immunotherapy field, helping to form a roadmap for checkpoint regulation and develop safer and more effective immunotherapies.




Hematopoietic Differentiation of Human Pluripotent Stem Cells


Book Description

This book features the most cutting-edge work from the world’s leading laboratories in this field and provides practical methods for differentiating pluripotent stem cells into hematopoietic lineages in the blood system. Pluripotent stem cells have attracted major interest from a fast-growing and multidisciplinary community of researchers who are developing new techniques for the derivation and differentiation of these cells into specific cell lineages. These direct differentiation methods hold great promise for the translational applications of these cells. This book is an essential reference work for researchers at all levels in the fields of hematology and stem cell biology, as well as clinical practitioners in regenerative medicine.