Chromatin and Chromatin Remodeling Enzymes Part C


Book Description

DNA in the nucleus of plant and animal cells is stored in the form of chromatin. Chromatin and the chromatin remodelling enzymes play an important role in gene transcription. - Genetic assays of chromatin modification and remodeling - Histone modifying enzymes - ATP-dependent chromatin remodeling enzymes




Chromatin Structure and Gene Expression


Book Description

Since publication of the first edition in 1995, there have been significant advances and understanding of chromatin structure and its relation to gene expression. These include a high-resolution structure of the nucleosome core, discovery of the enzymes and complexes that mediate histone acetylation and deacetylation, discovery of novel ATP-dependent chromatin remodeling complexes, new insights into nuclear organization and epigenetic silencing mechanisms. In light of these advances, Chromatin Structure and Gene Expression (2ed.) includes updated chapters and additional material that introduce new concepts in the process of gene regulation in chromatin.




Regulatory Mechanisms in Transcriptional Signaling


Book Description

Regulatory Mechanisms in Transcriptional Signaling, volume of Progress in Molecular Biology and Translational Science, includes in-depth discussion on roles of Chromatin remodeling proteins in nuclear receptor signaling, and the ANCCA regulator in cancer. This important resource, edited by Dr. Debabrata (Debu) Chakravarti, offers research on the progesterone receptor action in leiomyoma and endometrial cancer and emerging roles of the ubiquitin protein system in nuclear hormone receptor signaling to provide the reader with expert discussions of up-to-date research.




A Handbook of Transcription Factors


Book Description

Transcription factors are the molecules that the cell uses to interpret the genome: they possess sequence-specific DNA-binding activity, and either directly or indirectly influence the transcription of genes. In aggregate, transcription factors control gene expression and genome organization, and play a pivotal role in many aspects of physiology and evolution. This book provides a reference for major aspects of transcription factor function, encompassing a general catalogue of known transcription factor classes, origins and evolution of specific transcription factor types, methods for studying transcription factor binding sites in vitro, in vivo, and in silico, and mechanisms of interaction with chromatin and RNA polymerase.




Nuclear Hormone Receptors


Book Description

An overview of the supergene family made up of those nuclear hormone receptors which recognize thyroid and steroid hormones, vitamen D and retinoic acid and which are characterized by their ability to bind both ligands and the genes which respond to them.




Mechanisms Of Gene Expression: Structure, Function And Evolution Of The Basal Transcriptional Machine


Book Description

A detailed knowledge of the mechanisms underlying the transcriptional control of gene expression is of fundamental importance to many areas of contemporary biomedical research, ranging from understanding basic issues (such as control of embryonic development) to practical applications in industry and medicine. Although elementary concepts of gene expression are described in all general molecular biology textbooks, the depth of coverage is often rather limited and recent discoveries are sometimes not adequately taken into consideration.This book presents much of the current thinking concerning molecular mechanisms of transcriptional control in a form easily accessible to undergraduates with an understanding of basic molecular biology concepts. It contains detailed information about the various pro- and eukaryotic transcriptional machineries that has recently become available through the combined efforts of geneticists, biochemists and structural biologists. The book will thus not only serve as an undergraduate text but also offer something new and interesting to more advanced readers and professional scientists who want to keep up to date with rapid advances in this field.




Stochastic Processes: Modeling and Simulation


Book Description

This sequel to volume 19 of Handbook on Statistics on Stochastic Processes: Modelling and Simulation is concerned mainly with the theme of reviewing and, in some cases, unifying with new ideas the different lines of research and developments in stochastic processes of applied flavour. This volume consists of 23 chapters addressing various topics in stochastic processes. These include, among others, those on manufacturing systems, random graphs, reliability, epidemic modelling, self-similar processes, empirical processes, time series models, extreme value therapy, applications of Markov chains, modelling with Monte Carlo techniques, and stochastic processes in subjects such as engineering, telecommunications, biology, astronomy and chemistry. particular with modelling, simulation techniques and numerical methods concerned with stochastic processes. The scope of the project involving this volume as well as volume 19 is already clarified in the preface of volume 19. The present volume completes the aim of the project and should serve as an aid to students, teachers, researchers and practitioners interested in applied stochastic processes.







Fundamentals of Chromatin


Book Description

​​​​​​​​​​​​​While there has been an increasing number of books on various aspects of epigenetics, there has been a gap over the years in books that provide a comprehensive understanding of the fundamentals of chromatin. ​Chromatin is the combination of DNA and proteins that make up the genetic material of chromosomes. Its primary function is to package DNA to fit into the cell, to strengthen the DNA to prevent damage, to allow mitosis and meiosis, and to control the expression of genes and DNA replication. The audience for this book is mainly newly established scientists ​and graduate students. Rather than going into the more specific areas of recent research on chromatin the chapters in this book give a strong, updated groundwork about the topic. Some the fundamentals that this book will cover include the structure of chromatin and biochemistry and the enzyme complexes that manage it.




Phosphoinositides II: The Diverse Biological Functions


Book Description

Phosphoinositides play a major role in cellular signaling and membrane organization. During the last three decades we have learned that enzymes turning over phosphoinositides control vital physiological processes and are involved in the initiation and progression of cancer, inflammation, neurodegenerative, cardiovascular, metabolic disease and more. In two volumes, this book elucidates the crucial mechanisms that control the dynamics of phosphoinositide conversion. Starting out from phosphatidylinositol, a chain of lipid kinases collaborates to generate the oncogenic lipid phosphatidylinositol(3,4,5)-trisphosphate. For every phosphate group added, there are specific lipid kinases – and phosphatases to remove it. Additionally, phospholipases can cleave off the inositol head group and generate poly-phosphoinositols, which act as soluble signals in the cytosol. Volume II extends into the role of phosphoinositides in membrane organization and vesicular traffic. Endocytosis and exocytosis are modulated by phosphoinositides, which determine the fate and activity of integral membrane proteins. Phosphatidylinositol(4,5)-bisphosphate is a prominent flag in the plasma membrane, while phosphatidylinositol-3-phosphate decorates early endosomes. The Golgi apparatus is rich in phosphatidylinositol-4-phosphate, stressed cells increase phosphatidylinositol(3,5)-bisphosphate, and the nucleus has a phosphoinositide metabolism of its own. Phosphoinositide-dependent signaling cascades and the spatial organization of distinct phosphoinositide species are required in organelle function, fission and fusion, membrane channel regulation, cytoskeletal rearrangements, adhesion processes, and thus orchestrate complex cellular responses including growth, proliferation, differentiation, cell motility, and cell polarization.