Enteric Glia


Book Description

The enteric nervous system (ENS) is a complex neural network embedded in the gut wall that orchestrates the reflex behaviors of the intestine. The ENS is often referred to as the “little brain” in the gut because the ENS is more similar in size, complexity and autonomy to the central nervous system (CNS) than other components of the autonomic nervous system. Like the brain, the ENS is composed of neurons that are surrounded by glial cells. Enteric glia are a unique type of peripheral glia that are similar to astrocytes of the CNS. Yet enteric glial cells also differ from astrocytes in many important ways. The roles of enteric glial cell populations in the gut are beginning to come to light and recent evidence implicates enteric glia in almost every aspect of gastrointestinal physiology and pathophysiology. However, elucidating the exact mechanisms by which enteric glia influence gastrointestinal physiology and identifying how those roles are altered during gastrointestinal pathophysiology remain areas of intense research. The purpose of this e-book is to provide an introduction to enteric glial cells and to act as a resource for ongoing studies on this fascinating population of glia. Table of Contents: Introduction / A Historical Perspective on Enteric Glia / Enteric Glia: The Astroglia of the Gut / Molecular Composition of Enteric Glia / Development of Enteric Glia / Functional Roles of Enteric Glia / Enteric Glia and Disease Processes in the Gut / Concluding Remarks / References / Author Biography




Intestinal Stem Cell Niche


Book Description

Advances in Stem Cells and Their Niches addresses stem cells during development, homeostasis, and disease/injury of the respective organs, presenting new developments in the field, including new data on disease and clinical applications. Video content illustrates such areas as protocols, transplantation techniques, and work with mice. Explores not only reviews of research, but also shares methods, protocols, and transplantation techniques Contains video content to illustrate such areas as protocols, transplantation techniques, and work with mice Each volume concentrates on one organ, making this a unique publication




Colon Cancer Cells


Book Description




Gene Expression and Regulation in Mammalian Cells


Book Description

Sixty years after the "central dogma," great achievements have been developed in molecular biology. We have also learned the important functions of noncoding RNAs and epigenetic regulations. More importantly, whole genome sequencing and transcriptome analyses enabled us to diagnose specific diseases. This book is not only intended for students and researchers working in laboratory but also physicians and pharmacists. This volume consists of 14 chapters, divided into 4 parts. Each chapter is written by experts investigating biological stresses, epigenetic regulation, and functions of transcription factors in human diseases. All articles presented in this volume by excellent investigators provide new insights into the studies in transcriptional control in mammalian cells and will inspire us to develop or establish novel therapeutics against human diseases.




The Circadian Clock


Book Description

With the invitation to edit this volume, I wanted to take the opportunity to assemble reviews on different aspects of circadian clocks and rhythms. Although most c- tributions in this volume focus on mammalian circadian clocks, the historical int- duction and comparative clocks section illustrate the importance of various other organisms in deciphering the mechanisms and principles of circadian biology. Circadian rhythms have been studied for centuries, but only recently, a mole- lar understanding of this process has emerged. This has taken research on circadian clocks from mystic phenomenology to a mechanistic level; chains of molecular events can describe phenomena with remarkable accuracy. Nevertheless, current models of the functioning of circadian clocks are still rudimentary. This is not due to the faultiness of discovered mechanisms, but due to the lack of undiscovered processes involved in contributing to circadian rhythmicity. We know for example, that the general circadian mechanism is not regulated equally in all tissues of m- mals. Hence, a lot still needs to be discovered to get a full understanding of cir- dian rhythms at the systems level. In this respect, technology has advanced at high speed in the last years and provided us with data illustrating the sheer complexity of regulation of physiological processes in organisms. To handle this information, computer aided integration of the results is of utmost importance in order to d- cover novel concepts that ultimately need to be tested experimentally.




The Cancer Stem Cell Niche


Book Description

The Cancer Stem Cell Niche, Volume Five in the Advances in Stem Cells and their Niches series, highlights new advances in the field, with this new volume presenting interesting chapters on a variety of timely topics, including Acute lymphoblastic leukemia and the bone marrow microenvironment, Stem cell niches in bone and their roles in cancer metastasis, The role of vasculature in cancer stem cell niches, The lung cancer stem cell niche, The prostate cancer stem cell niche: Genetic drivers and therapeutic approaches, Impact of prostate cancer stem cell niches on prostate cancer tumorigenesis and progression, The testicular cancer stem cell niche. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Advances in Stem Cells and their Niches series Includes the latest information on the Cancer Stem Cell Niche




DNA Methyltransferases - Role and Function


Book Description

DNA methyltransferases are important enzymes in a broad range of organisms. Dysfunction of DNA methyltransferases in humans leads to many severe diseases, including cancer. This book focuses on the biochemical properties of these enzymes, describing their structures and mechanisms in bacteria, humans and other species, including plants, and also explains the biological processes of reading of DNA methylation and DNA demethylation. It covers many emerging aspects of the biological roles of DNA methylation functioning as an essential epigenetic mark and describes the role of DNA methylation in diseases. Moreover, the book explains modern technologies, like targeted rewriting of DNA methylation by designed DNA methyltransferases, as well as technological applications of DNA methyltransferases in DNA labelling. Finally, the book summarizes recent methods for the analysis of DNA methylation in human DNA. Overall, this book represents a comprehensive state-of-the-art- work and is a must-have for advanced researchers in the field of DNA methylation and epigenetics.




Stem Cells


Book Description

Stem cells are relatively undifferentiated cells which are the permanent lineage ancestor cells of tissues. Newly developed molecular biological techniques and probes have made possible dramatic advances in our ability to study the lineage development of stem cells. A major impetus to develop these techniques has been to identify specific stem cells for gene therapy purposes. The role that stem cells play in the development of cancer is also an important area. This book provides up-to-date reviews on a wide variety of stem cell systems by world experts. Chapters range from descriptions of the current knowledge of the biology of stem cells, to current molecular biological approaches and clinical implications. Oncologists and cell biologists will find this book of particular interest. It will also be usefule to radiobiologist, biotechnologists, and gene therapists. - Provides reviews of stem cell systems by world experts - Covers stem cell biology in plants, invertebrates, and mammals - Presents clinical implications of stem cell differentiation




Transcriptional Control of Neural Crest Development


Book Description

The neural crest is a remarkable embryonic population of cells found only in vertebrates and has the potential to give rise to many different cell types contributing throughout the body. These derivatives range from the mesenchymal bone and cartilage comprising the facial skeleton, to neuronal derivatives of the peripheral sensory and autonomic nervous systems, to melanocytes throughout the body, and to smooth muscle of the great arteries of the heart. For these cells to correctly progress from an unspecifi ed, nonmigratory population to a wide array of dynamic, differentiated cell types-some of which retain stem cell characteristics presumably to replenish these derivatives-requires a complex network of molecular switches to control the gene programs giving these cells their defi ning structural, enzymatic, migratory, and signaling capacities. This review will bring together current knowledge of neural crest-specifi c transcription factors governing these progressions throughout the course of development. A more thorough understanding of the mechanisms of transcriptional control in differentiation will aid in strategies designed to push undifferentiated cells toward a particular lineage, and unraveling these processes will help toward reprogramming cells from a differentiated to a more naive state. Table of Contents: Introduction / AP Genes / bHLH Genes / ETS Genes / Fox Genes / Homeobox Genes / Hox Genes / Lim Genes / Pax Genes / POU Domain Genes / RAR/RXR Genes / Smad Genes / Sox Genes / Zinc Finger Genes / Other Miscellaneous Genes / References / Author Biographies




Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.