Abiotic Stress-Mediated Sensing and Signaling in Plants: An Omics Perspective


Book Description

The natural environment for plants is composed of a complex set of abiotic and biotic stresses; plant responses to these stresses are equally complex. Systems biology allows us to identify regulatory hubs in complex networks. It also examines the molecular “parts” (transcripts, proteins and metabolites) of an organism and attempts to combine them into functional networks or models that effectively describe and predict the dynamic activities of that organism in different environments. This book focuses on research advances regarding plant responses to abiotic stresses, from the physiological level to the molecular level. It highlights new insights gained from the integration of omics datasets and identifies remaining gaps in our knowledge, outlining additional focus areas for future crop improvement research. Plants have evolved a wide range of mechanisms for coping with various abiotic stresses. In many crop plants, the molecular mechanisms involved in a single type of stress tolerance have since been identified; however, in order to arrive at a holistic understanding of major and common events concerning abiotic stresses, the signaling pathways involved must also be elucidated. To date several molecules, like transcription factors and kinases, have been identified as promising candidates that are involved in crosstalk between stress signalling pathways. However, there is a need to better understand the tolerance mechanisms for different abiotic stresses by thoroughly grasping the signalling and sensing mechanisms involved. Accordingly, this book covers a range of topics, including the impacts of different abiotic stresses on plants, the molecular mechanisms leading to tolerance for different abiotic stresses, signaling cascades revealing cross-talk among various abiotic stresses, and elucidation of major candidate molecules that may provide abiotic stress tolerance in plants.




Plant Metabolites and Regulation under Environmental Stress


Book Description

Plant Metabolites and Regulation Under Environmental Stress presents the latest research on both primary and secondary metabolites. The book sheds light on the metabolic pathways of primary and secondary metabolites, the role of these metabolites in plants, and the environmental impact on the regulation of these metabolites. Users will find a comprehensive, practical reference that aids researchers in their understanding of the role of plant metabolites in stress tolerance. Highlights new advances in the understanding of plant metabolism Features 17 protocols and methods for analysis of important plant secondary metabolites Includes sections on environmental adaptations and plant metabolites, plant metabolites and breeding, plant microbiome and metabolites, and plant metabolism under non-stress conditions




Omics Technologies for Sustainable Agriculture and Global Food Security (Vol II)


Book Description

This edited book brings out a comprehensive collection of information on the modern omics-based research. The main focus of this book is to educate researchers about utility of omics-based technologies in rapid crop improvement. In last two decades, omics technologies have been utilized significantly in the area of plant sciences and has shown promising results. Omics technology has potential to address the challenge of food security in the near future. The comprehensive use of omics technology occurred in last two decades and helped greatly in the understanding of complex biological problems, improve crop productivity and ensure sustainable use of ecosystem services. This book is of interest to researchers and students of life sciences, biotechnology, plant biotechnology, agriculture, forestry, and environmental sciences. It is also a useful knowledge resource for national and international agricultural scientists.




Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change


Book Description

Climate change is a complex phenomenon with a wide range of impacts on the environment. Biotic and abiotic stress are a result of climate change. Abiotic stress is caused by primary and secondary stresses which are an impediment to plant productivity. Prolonged exposure to these stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to withstand these stresses, e.g. synthesis of osmolytes, osmoprotectants, and antioxidants. Stress responsive genes and gene products including expressed proteins are implicated in conferring tolerance to the plant. This volume will provide the reader with a wide spectrum of information, including vital references. It also provides information as to how phytoconstituents, hormones and plant associated microbes help the plants to tolerate the stress. This volume also highlights the use of plant resources for ameliorating soil contaminants such as heavy metals. Dr. Parvaiz is Assistant professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad had published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant national Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.




Abiotic Stress Response in Plants


Book Description

Plants, unlike animals, are sessile. This demands that adverse changes in their environment are quickly recognized, distinguished and responded to with suitable reactions. Drought, heat, cold and salinity are among the major abiotic stresses that adversely affect plant growth and productivity. In general, abiotic stress often causes a series of morphological, physiological, biochemical and molecular changes that unfavorably affect plant growth, development and productivity. Drought, salinity, extreme temperatures (cold and heat) and oxidative stress are often interrelated; these conditions singularly or in combination induce cellular damage. To cope with abiotic stresses, of paramount significance is to understand plant responses to abiotic stresses that disturb the homeostatic equilibrium at cellular and molecular level in order to identify a common mechanism for multiple stress tolerance. This multi authored edited compilation attempts to put forth an all-inclusive biochemical and molecular picture in a systems approach wherein mechanism and adaptation aspects of abiotic stress are dealt with. The chief objective of the book hence is to deliver state of the art information for comprehending the effects of abiotic stress in plants at the cellular level.




Plant Abiotic Stress


Book Description

Over the past decade, our understanding of plant adaptation to environmental stress has grown considerably. This book focuses on stress caused by the inanimate components of the environment associated with climatic, edaphic and physiographic factors that substantially limit plant growth and survival. Categorically these are abiotic stresses, which include drought, salinity, non-optimal temperatures and poor soil nutrition. Another stress, herbicides, is covered in this book to highlight how plants are impacted by abiotic stress originating from anthropogenic sources. The book also addresses the high degree to which plant responses to quite diverse forms of environmental stress are interconnected, describing the ways in which the plant utilizes and integrates many common signals and subsequent pathways to cope with less favorable conditions. The book is directed at researchers and professionals in plant physiology, cell biology and molecular biology, in both the academic and industrial sectors.




Molecular Techniques in Crop Improvement


Book Description

This book provides comprehensive information on the latest tools and techniques of molecular genetics and their applications in crop improvement. It thoroughly discusses advanced techniques used in molecular markers, QTL mapping, marker-assisted breeding, and molecular cytogenetics.




Gasotransmitters Signaling in Plant Abiotic Stress


Book Description

This book deals with the gasotransmitters signaling in redox reactions and homeostasis for the adaptation of plants to unfavorable abiotic stress environments. There are lots of interesting chapters in this book that cover both research and educational objectives. This book serves as a reference illustrated book for all who are interested in the regulation of gasotransmitters and redox homeostasis in agriculture. Maintenance of redox homeostasis strengthens the potentiality of plants to resist abiotic stress conditions through the enhanced antioxidant system and the subsequent impact on other signaling molecules. The book presents novel outcomes and implications in plant biology concerning the study of different types of gasotransmitters signaling such as nitric oxide (NO), ethylene, hydrogen sulfide (H2S), etc. under diverse abiotic stresses in one place. The chapters of the book discuss the recent progress and current perspectives on the role of gasotransmitters relevance to plant functions and adaptations to abiotic stresses, the influence of gasotransmitters on the physiology of plants with respect to abiotic stress tolerance, gasotransmitters and omics for abiotic stress tolerance, advancement in the biology of gasotransmitters in regulating salinity and drought stress response in plants, new insights of gasotransmitters and cellular redox homeostasis in plants and the chapter also deliberate the emerging role of gasotransmitters in regulating redox homeostasis for plant stress management. This book is the first comprehensive book covering all aspects and advancements in the biology of gasotransmitters in redox homeostasis conferring different abiotic stress tolerance, from which readers from all backgrounds can get benefitted. This book will appeal to researchers, students, scientific societies, agriculturists, etc.




Omics Technologies for Sustainable Agriculture and Global Food Security Volume 1


Book Description

Increasing world population, unpredictable climate and various kind of biotic and abiotic stresses necessitate the sustainable increase in crop production through developing improved cultivars possessing enhanced genetic resilience against all odds. An exploration of these challenges and near possible solution to improve yield is addressed in this book. It comprehensively and coherently reviews the application of various aspect of rapidly growing omics technology including genomics, proteomics, transcriptomics and metabolomics for crop development. It provides detailed examination of how omics can help crop science and introduces the benefits of using these technologies to enhance crop production, resistance and other values. It also provides platform to ponder upon the integrative approach of omics to deal with complex biological problems. The book highlights crop improvement such as yield enhancement, biotic and abiotic resistance, genetic modification, bioremediation, food security etc. It explores how the different omics technology independently and collectively would be used to improve the quantitative and qualitative traits of crop plants. The book is useful for graduate and post-graduate students of life science including researchers who are keen to know about the application of omics technologies in the different area of plant science. This book is also an asset to the modern plant breeders, and agriculture biotechnologist.