Transformer and Inductor Design Handbook, Third Edition


Book Description

Extensively revised and expanded to present the state-of-the-art in the field of magnetic design, this third edition presents a practical approach to transformer and inductor design and covers extensively essential topics such as the area product, Ap, and core geometry, Kg. The book provides complete information on magnetic materials and core characteristics using step-by-step design examples and presents all the key components for the design of lightweight, high-frequency aerospace transformers or low-frequency commercial transformers. Written by a specialist with more than 47 years of experience in the field, this volume covers magnetic design theory with all of the relevant formulas.




Transformer and Inductor Design Handbook, Third Edition


Book Description

Extensively revised and expanded to present the state-of-the-art in the field of magnetic design, this third edition presents a practical approach to transformer and inductor design and covers extensively essential topics such as the area product, Ap, and core geometry, Kg. The book provides complete information on magnetic materials and core characteristics using step-by-step design examples and presents all the key components for the design of lightweight, high-frequency aerospace transformers or low-frequency commercial transformers. Written by a specialist with more than 47 years of experience in the field, this volume covers magnetic design theory with all of the relevant formulas.




Transformer and Inductor Design Handbook


Book Description

"Preface I have had many requests to update my book Transformer and Inductor Design Handbook, because of the way power electronics has changed in the past few years. I have been requested to add and expand on the present Chapters. There are now twenty-six Chapters. The new Chapters are autotransformer design, common-mode inductor design, series saturable reactor design, self-saturating magnetic amplifier and designing inductors for a given resistance, all with step-by-step design examples. This book offers a practical approach with design examples for design engineers and system engineers in the electronics industry, as well as the aerospace industry. While there are other books available on electronic transformers, none of them seem to have been written with the user's viewpoint in mind. The material in this book is organized so that the design engineer, student engineer or technician, starting at the beginning of the book and continuing through the end, will gain a comprehensive knowledge of the state of the art in transformer and inductor design. The more experienced engineers and system engineers will find this book a useful tool when designing or evaluating transformers and inductors. Transformers are to be found in virtually all electronic circuits. This book can easily be used to design lightweight, high-frequency aerospace transformers or low-frequency commercial transformers. It is, therefore, a design manual"--




Transformers and Inductors for Power Electronics


Book Description

Based on the fundamentals of electromagnetics, this clear and concise text explains basic and applied principles of transformer and inductor design for power electronic applications. It details both the theory and practice of inductors and transformers employed to filter currents, store electromagnetic energy, provide physical isolation between circuits, and perform stepping up and down of DC and AC voltages. The authors present a broad range of applications from modern power conversion systems. They provide rigorous design guidelines based on a robust methodology for inductor and transformer design. They offer real design examples, informed by proven and working field examples. Key features include: emphasis on high frequency design, including optimisation of the winding layout and treatment of non-sinusoidal waveforms a chapter on planar magnetic with analytical models and descriptions of the processing technologies analysis of the role of variable inductors, and their applications for power factor correction and solar power unique coverage on the measurements of inductance and transformer capacitance, as well as tests for core losses at high frequency worked examples in MATLAB, end-of-chapter problems, and an accompanying website containing solutions, a full set of instructors’ presentations, and copies of all the figures. Covering the basics of the magnetic components of power electronic converters, this book is a comprehensive reference for students and professional engineers dealing with specialised inductor and transformer design. It is especially useful for senior undergraduate and graduate students in electrical engineering and electrical energy systems, and engineers working with power supplies and energy conversion systems who want to update their knowledge on a field that has progressed considerably in recent years.




Switching Power Supply Design, 3rd Ed.


Book Description

The World's #1 Guide to Power Supply Design Now Updated! Recognized worldwide as the definitive guide to power supply design for over 25 years, Switching Power Supply Design has been updated to cover the latest innovations in technology, materials, and components. This Third Edition presents the basic principles of the most commonly used topologies, providing you with the essential information required to design cutting-edge power supplies. Using a tutorial, how-and-why approach, this expert resource is filled with design examples, equations, and charts. The Third Edition of Switching Power Supply Design features: Designs for many of the most useful switching power supply topologies The core principles required to solve day-to-day design problems A strong focus on the essential basics of transformer and magnetics design New to this edition: a full chapter on choke design and optimum drive conditions for modern fast IGBTs Get Everything You Need to Design a Complete Switching Power Supply: Fundamental Switching Regulators * Push-Pull and Forward Converter Topologies * Half- and Full-Bridge Converter Topologies * Flyback Converter Topologies * Current-Mode and Current-Fed Topologies * Miscellaneous Topologies * Transformer and Magnetics Design * High-Frequency Choke Design * Optimum Drive Conditions for Bipolar Power Transistors, MOSFETs, Power Transistors, and IGBTs * Drive Circuits for Magnetic Amplifiers * Postregulators * Turn-on, Turn-off Switching Losses and Low Loss Snubbers * Feedback-Loop Stabilization * Resonant Converter Waveforms * Power Factor and Power Factor Correction * High-Frequency Power Sources for Fluorescent Lamps, and Low-Input-Voltage Regulators for Laptop Computers and Portable Equipment




Transformer Design Principles, Third Edition


Book Description

In the newest edition, the reader will learn the basics of transformer design, starting from fundamental principles and ending with advanced model simulations. The electrical, mechanical, and thermal considerations that go into the design of a transformer are discussed with useful design formulas, which are used to ensure that the transformer will operate without overheating and survive various stressful events, such as a lightning strike or a short circuit event. This new edition includes a section on how to correct the linear impedance boundary method for non-linear materials and a simpler method to calculate temperatures and flows in windings with directed flow cooling, using graph theory. It also includes a chapter on optimization with practical suggestions on achieving the lowest cost design with constraints.




Magnetic Core Selection for Transformers and Inductors


Book Description

Written as a companion to Transformer and Inductor Design Handbook (second ed), this work compiles the specifications of over 12,000 industrially available cores and brings them in line with standard units of measurement, simplifying the selection of core configurations for the design of magnetic components.




Handbook of Transformer Design and Applications


Book Description

This second edition updates what has become a standard reference on the subject, and now includes a selection of highly useful computer solutions to many transformer circuit problems. Every chapter reflects the latest technology advances--and the section on inverter transformers is expanded to better address the increasingly important subject of power supplies.




Inductance Calculations


Book Description

This authoritative reference enables the design of virtually every type of inductor. It features a single simple formula for each type of inductor, together with tables containing essential numerical factors. 1946 edition.




Switchmode Power Supply Handbook 3/E


Book Description

The definitive guide to switchmode power supply design--fully updated Covering the latest developments and techniques, Switchmode Power Supply Handbook, third edition is a thorough revision of the industry-leading resource for power supply designers. New design methods required for powering small, high-performance electronic devices are presented. Based on the authors' decades of experience, the book is filled with real-world solutions and many nomograms, and features simplified theory and mathematical analysis. This comprehensive volume explains common requirements for direct operation from the AC line supply and discusses design, theory, and practice. Engineering requirements of switchmode systems and recommendations for active power factor correction are included. This practical guide provides you with a working knowledge of the latest topologies along with step-by-step approaches to component decisions to achieve reliable and cost-effective power supply designs. Switchmode Power Supply Handbook, third edition covers: Functional requirements of direct off-line switchmode power supplies Power components selection and transformer designs for converter circuits Transformer, choke, and thermal design Input filters, RFI control, snubber circuits, and auxiliary systems Active power factor correction system design Worked examples of would components Examples of fully resonant and quasi-resonant systems A resonant inverter fluorescent ballast An example of high-power phase shift modulated system A new MOSFET resonant inverter drive scheme A single-control, wide-range wave oscillator