Transforming EPA Science to Meet Today's and Tomorrow's Challenges


Book Description

Since its establishment in 1970, the mission of the Environmental Protection Agency is to protect human health and the environment. EPA develops regulations, ensures compliance, and issues policies, in coordination with state, tribal, and local governments. To accomplish its mission, EPA should be equipped to produce and access the highest quality and most advanced science. The Office of Research and Development (ORD) provides the scientific bases for regulatory and public health policies that have broad impacts on the nation's natural resources and quality of human life, and that yield economic benefits and incur compliance costs for the regulated community. In addition, ORD develops the agency core research capabilities, providing tools and methods for meeting current and anticipating future environmental challenges, such as the risks to health and the environment posed by climate change. Because challenges associated with environmental protection today are complex and affected by many interacting factors, the report points to the need for a substantially broader and better integrated approach to environmental protection. This report calls for EPA ORD to pursue all of its scientific aims in a new framework?to apply systems thinking to a One Environment ? One Health approach in all aspects of ORD work. To accomplish this, the report provides actionable recommendations on how ORD might consider incorporating emerging science and systems thinking into the agency research planning, so that ORD can become an increasingly impactful organization. The report identifies a number of high-priority recommendations for ORD to pursue in taking advantage of a broad range of advanced tools, in concert with collaborators in other federal agencies and the broader scientific community. Given the resource constraints, the report recognizes that ORD will have to make decisions about priorities for implementing its recommendations, and that ORD leadership is in the best position to set those priorities as implementation begins. The report concluded by stating that shifting to a systems-thinking approach will require renewed support from science leadership, enhanced strategic planning, investment in new and broader expertise and tools, and a reimagined and inclusive commitment to communication and collaboration.




Science for Environmental Protection


Book Description

In anticipation of future environmental science and engineering challenges and technologic advances, EPA asked the National Research Council (NRC) to assess the overall capabilities of the agency to develop, obtain, and use the best available scientific and technologic information and tools to meet persistent, emerging, and future mission challenges and opportunities. Although the committee cannot predict with certainty what new environmental problems EPA will face in the next 10 years or more, it worked to identify some of the common drivers and common characteristics of problems that are likely to occur. Tensions inherent to the structure of EPA's work contribute to the current and persistent challenges faced by the agency, and meeting those challenges will require development of leading-edge scientific methods, tools, and technologies, and a more deliberate approach to systems thinking and interdisciplinary science. Science for Environmental Protection: The Road Ahead outlines a framework for building science for environmental protection in the 21st century and identified key areas where enhanced leadership and capacity can strengthen the agency's abilities to address current and emerging environmental challenges as well as take advantage of new tools and technologies to address them. The foundation of EPA science is strong, but the agency needs to continue to address numerous present and future challenges if it is to maintain its science leadership and meet its expanding mandates.




Exposure Science in the 21st Century


Book Description

From the use of personal products to our consumption of food, water, and air, people are exposed to a wide array of agents each day-many with the potential to affect health. Exposure Science in the 21st Century: A Vision and A Strategy investigates the contact of humans or other organisms with those agents (that is, chemical, physical, and biologic stressors) and their fate in living systems. The concept of exposure science has been instrumental in helping us understand how stressors affect human and ecosystem health, and in efforts to prevent or reduce contact with harmful stressors. In this way exposure science has played an integral role in many areas of environmental health, and can help meet growing needs in environmental regulation, urban and ecosystem planning, and disaster management. Exposure Science in the 21st Century: A Vision and A Strategy explains that there are increasing demands for exposure science information, for example to meet needs for data on the thousands of chemicals introduced into the market each year, and to better understand the health effects of prolonged low-level exposure to stressors. Recent advances in tools and technologies-including sensor systems, analytic methods, molecular technologies, computational tools, and bioinformatics-have provided the potential for more accurate and comprehensive exposure science data than ever before. This report also provides a roadmap to take advantage of the technologic innovations and strategic collaborations to move exposure science into the future.




DOE this Month


Book Description




Building a Foundation for Sound Environmental Decisions


Book Description

Over the past decades, environmental problems have attracted enormous attention and public concern. Many actions have been taken by the U.S. Environmental Protection Agency and others to protect human health and ecosystems from particular threats. Despite some successes, many problems remain unsolved and new ones are emerging. Increasing population and related pressures, combined with a realization of the interconnectedness and complexity of environmental systems, present new challenges to policymakers and regulators. Scientific research has played, and will continue to play, an essential part in solving environmental problems. Decisions based on incorrect or incomplete understanding of environmental systems will not achieve the greatest reduction of risk at the lowest cost. This volume describes a framework for acquiring the knowledge needed both to solve current recognized problems and to be prepared for the kinds of problems likely to emerge in the future. Many case examples are included to illustrate why some environmental control strategies have succeeded where others have fallen short and how we can do better in the future.




The Future of Atmospheric Chemistry Research


Book Description

Our world is changing at an accelerating rate. The global human population has grown from 6.1 billion to 7.1 billion in the last 15 years and is projected to reach 11.2 billion by the end of the century. The distribution of humans across the globe has also shifted, with more than 50 percent of the global population now living in urban areas, compared to 29 percent in 1950. Along with these trends, increasing energy demands, expanding industrial activities, and intensification of agricultural activities worldwide have in turn led to changes in emissions that have altered the composition of the atmosphere. These changes have led to major challenges for society, including deleterious impacts on climate, human and ecosystem health. Climate change is one of the greatest environmental challenges facing society today. Air pollution is a major threat to human health, as one out of eight deaths globally is caused by air pollution. And, future food production and global food security are vulnerable to both global change and air pollution. Atmospheric chemistry research is a key part of understanding and responding to these challenges. The Future of Atmospheric Chemistry Research: Remembering Yesterday, Understanding Today, Anticipating Tomorrow summarizes the rationale and need for supporting a comprehensive U.S. research program in atmospheric chemistry; comments on the broad trends in laboratory, field, satellite, and modeling studies of atmospheric chemistry; determines the priority areas of research for advancing the basic science of atmospheric chemistry; and identifies the highest priority needs for improvements in the research infrastructure to address those priority research topics. This report describes the scientific advances over the past decade in six core areas of atmospheric chemistry: emissions, chemical transformation, oxidants, atmospheric dynamics and circulation, aerosol particles and clouds, and biogeochemical cycles and deposition. This material was developed for the NSF's Atmospheric Chemistry Program; however, the findings will be of interest to other agencies and programs that support atmospheric chemistry research.




Planetary Health


Book Description

Human health depends on the health of the planet. Earth’s natural systems—the air, the water, the biodiversity, the climate—are our life support systems. Yet climate change, biodiversity loss, scarcity of land and freshwater, pollution and other threats are degrading these systems. The emerging field of planetary health aims to understand how these changes threaten our health and how to protect ourselves and the rest of the biosphere. Planetary Health: Protecting Nature to Protect Ourselves provides a readable introduction to this new paradigm. With an interdisciplinary approach, the book addresses a wide range of health impacts felt in the Anthropocene, including food and nutrition, infectious disease, non-communicable disease, dislocation and conflict, and mental health. It also presents strategies to combat environmental changes and its ill-effects, such as controlling toxic exposures, investing in clean energy, improving urban design, and more. Chapters are authored by widely recognized experts. The result is a comprehensive and optimistic overview of a growing field that is being adopted by researchers and universities around the world. Students of public health will gain a solid grounding in the new challenges their profession must confront, while those in the environmental sciences, agriculture, the design professions, and other fields will become familiar with the human consequences of planetary changes. Understanding how our changing environment affects our health is increasingly critical to a variety of disciplines and professions. Planetary Health is the definitive guide to this vital field.




Safeguarding the Bioeconomy


Book Description

Research and innovation in the life sciences is driving rapid growth in agriculture, biomedical science, information science and computing, energy, and other sectors of the U.S. economy. This economic activity, conceptually referred to as the bioeconomy, presents many opportunities to create jobs, improve the quality of life, and continue to drive economic growth. While the United States has been a leader in advancements in the biological sciences, other countries are also actively investing in and expanding their capabilities in this area. Maintaining competitiveness in the bioeconomy is key to maintaining the economic health and security of the United States and other nations. Safeguarding the Bioeconomy evaluates preexisting and potential approaches for assessing the value of the bioeconomy and identifies intangible assets not sufficiently captured or that are missing from U.S. assessments. This study considers strategies for safeguarding and sustaining the economic activity driven by research and innovation in the life sciences. It also presents ideas for horizon scanning mechanisms to identify new technologies, markets, and data sources that have the potential to drive future development of the bioeconomy.




Science and Decisions


Book Description

Risk assessment has become a dominant public policy tool for making choices, based on limited resources, to protect public health and the environment. It has been instrumental to the mission of the U.S. Environmental Protection Agency (EPA) as well as other federal agencies in evaluating public health concerns, informing regulatory and technological decisions, prioritizing research needs and funding, and in developing approaches for cost-benefit analysis. However, risk assessment is at a crossroads. Despite advances in the field, risk assessment faces a number of significant challenges including lengthy delays in making complex decisions; lack of data leading to significant uncertainty in risk assessments; and many chemicals in the marketplace that have not been evaluated and emerging agents requiring assessment. Science and Decisions makes practical scientific and technical recommendations to address these challenges. This book is a complement to the widely used 1983 National Academies book, Risk Assessment in the Federal Government (also known as the Red Book). The earlier book established a framework for the concepts and conduct of risk assessment that has been adopted by numerous expert committees, regulatory agencies, and public health institutions. The new book embeds these concepts within a broader framework for risk-based decision-making. Together, these are essential references for those working in the regulatory and public health fields.




Silent Spring


Book Description

The essential, cornerstone book of modern environmentalism is now offered in a handsome 40th anniversary edition which features a new Introduction by activist Terry Tempest Williams and a new Afterword by Carson biographer Linda Lear.