Transgenic Models in Pharmacology


Book Description

Up-to-date information on animal models generated by transgenic or gene targeting techniques. Naturally, the focus is on the mouse system. Each chapter has been written by leading experts in the field and gives an overview on existing animal models. This is facilitated by tables, which list the most important genetically engineered animal models and their phenotypes. This book aims at illustrating the impact of transgenic animal models in the field of Experimental Pharmacology and Toxicology, which includes their role in the understanding of basic cellular mechanisms, the evaluation of potential drug targets or the testing for drug effects.




Transgenic Models in Pharmacology


Book Description

Up-to-date information on animal models generated by transgenic or gene targeting techniques. Naturally, the focus is on the mouse system. Each chapter has been written by leading experts in the field and gives an overview on existing animal models. This is facilitated by tables, which list the most important genetically engineered animal models and their phenotypes. This book aims at illustrating the impact of transgenic animal models in the field of Experimental Pharmacology and Toxicology, which includes their role in the understanding of basic cellular mechanisms, the evaluation of potential drug targets or the testing for drug effects.




Scientific Frontiers in Developmental Toxicology and Risk Assessment


Book Description

Scientific Frontiers in Developmental Toxicology and Risk Assessment reviews advances made during the last 10-15 years in fields such as developmental biology, molecular biology, and genetics. It describes a novel approach for how these advances might be used in combination with existing methodologies to further the understanding of mechanisms of developmental toxicity, to improve the assessment of chemicals for their ability to cause developmental toxicity, and to improve risk assessment for developmental defects. For example, based on the recent advances, even the smallest, simplest laboratory animals such as the fruit fly, roundworm, and zebrafish might be able to serve as developmental toxicological models for human biological systems. Use of such organisms might allow for rapid and inexpensive testing of large numbers of chemicals for their potential to cause developmental toxicity; presently, there are little or no developmental toxicity data available for the majority of natural and manufactured chemicals in use. This new approach to developmental toxicology and risk assessment will require simultaneous research on several fronts by experts from multiple scientific disciplines, including developmental toxicologists, developmental biologists, geneticists, epidemiologists, and biostatisticians.




Methods of Behavior Analysis in Neuroscience


Book Description

Using the most well-studied behavioral analyses of animal subjects to promote a better understanding of the effects of disease and the effects of new therapeutic treatments on human cognition, Methods of Behavior Analysis in Neuroscience provides a reference manual for molecular and cellular research scientists in both academia and the pharmaceutic




Improving the Utility and Translation of Animal Models for Nervous System Disorders


Book Description

Nervous system diseases and disorders are highly prevalent and substantially contribute to the overall disease burden. Despite significant information provided by the use of animal models in the understanding of the biology of nervous system disorders and the development of therapeutics; limitations have also been identified. Treatment options that are high in efficacy and low in side effects are still lacking for many diseases and, in some cases are nonexistent. A particular problem in drug development is the high rate of attrition in Phase II and III clinical trials. Why do many therapeutics show promise in preclinical animal models but then fail to elicit predicted effects when tested in humans? On March 28 and 29, 2012, the Institute of Medicine Forum on Neuroscience and Nervous System Disorders convened the workshop "Improving Translation of Animal Models for Nervous System Disorders" to discuss potential opportunities for maximizing the translation of new therapies from animal models to clinical practice. The primary focus of the workshop was to examine mechanisms for increasing the efficiency of translational neuroscience research through discussions about how and when to use animal models most effectively and then best approaches for the interpretation of the data collected. Specifically, the workshop objectives were to: discuss key issues that contribute to poor translation of animal models in nervous system disorders, examine case studies that highlight successes and failures in the development and application of animal models, consider strategies to increase the scientific rigor of preclinical efficacy testing, explore the benefits and challenges to developing standardized animal and behavioral models. Improving the Utility and Translation of Animal Models for Nervous System Disorders: Workshop Summary also identifies methods to facilitate development of corresponding animal and clinical endpoints, indentifies methods that would maximize bidirectional translation between basic and clinical research and determines the next steps that will be critical for improvement of the development and testing of animal models of disorders of the nervous system.




Animal Models in Toxicology


Book Description

Reflecting more than a decade's worth of changes, Animal Models in Toxicology, Second Edition is a practical guide to the common statistical problems encountered in toxicology and the methodologies that are available to solve them. The book presents a historical review of the use of animal models and an overview of broad considerations of me




Animal Models for Neurodegenerative Disease


Book Description

In recent years, medical developments have resulted in an increase in human life expectancy. Some developed countries now have a larger population of individuals aged over 64 than those under 14. One consequence of the ageing population is a higher incidence of certain neurodegenerative disorders. In order to prevent these, we need to learn more about them. This book provides up-to-date information on the use of transgenic mouse models in the study of neurodegenerative disorders such as Alzheimer's and Huntington's disease. By reproducing some of the pathological aspects of the diseases, these studies could reveal the mechanism for their onset or development. Some of the transgenic mice can also be used as targets for testing new compounds with the potential to prevent or combat these disorders. The editors have extensive knowledge and experience in this field and the book is aimed at undergraduates, postgraduates and academics. The chapters cover disorders including: Alzheimer's disease, Parkinson's disease, Huntington's and other CAG diseases, amyotrophic lateral sclerosis (ALS), recessive ataxias, disease caused by prions, and ischemia.




Transgenic Mouse Methods and Protocols


Book Description

Marten Hofker and Jan van Deursen have assembled a multidisciplinary collection of readily reproducible methods for working with mice, and particularlyfor generating mouse models that will enable us to better understand gene function. Described in step-by-step detail by highly experienced investigators, these proven techniques include new methods for conditional, induced knockout, and transgenic mice, as well as for working with mice in such important research areas as immunology, cancer, and atherosclerosis. Such alternative strategies as random mutagenesis and viral gene transduction for studying gene function in the mouse are also presented.




Neuroprotective Effects of Phytochemicals in Neurological Disorders


Book Description

Phytochemicals are naturally occurring bioactive compounds found in edible fruits, plants, vegetables, and herbs. Unlike vitamins and minerals, phytochemicals are not needed for the maintenance of cell viability, but they play a vital role in protecting neural cells from inflammation and oxidative stress associated with normal aging and acute and chronic age-related brain diseases. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the advances in our understanding of the potential neuroprotective benefits that these naturally occurring chemicals contain. Neuroprotective Effects of Phytochemicals in Neurological Disorders explores the role that a number of plant-based chemical compounds play in a wide variety of neurological disorders. Chapters explore the impact of phytochemicals on neurotraumatic disorders, such as stroke and spinal cord injury, alongside neurodegenerative diseases such as Alzheimer's and Parkinson's Disease, as well as neuropsychiatric disorders such as depression and schizophrenia. The chapters and sections of this book provide the reader with a big picture view of this field of research. Neuroprotective Effects of Phytochemicals in Neurological Disorders aims to present readers with a comprehensive and cutting edge look at the effects of phytochemicals on the brain and neurological disorders in a manner useful to researchers, neuroscientists, clinical nutritionists, and physicians.




Leucine-Rich Repeat Kinase 2 (LRRK2)


Book Description

This is the first book to assemble the leading researchers in the field of LRRK2 biology and neurology and provide a snapshot of the current state of knowledge, encompassing all major aspects of its function and dysfunction. The contributors are experts in cell biology and physiology, neurobiology, and medicinal chemistry, bringing a multidisciplinary perspective on the gene and its role in disease. The book covers the identification of LRRK2 as a major contributor to the pathogenesis of Parkinson's Disease. It also discusses the current state of the field after a decade of research, putative normal physiological roles of LRRK2, and the various pathways that have been identified in the search for the mechanism(s) of its induction of neurodegeneration.