Bartholomew and the Oobleck


Book Description

Join Bartholomew Cubbins in Dr. Seuss’s Caldecott Honor–winning picture book about a king’s magical mishap! Bored with rain, sunshine, fog, and snow, King Derwin of Didd summons his royal magicians to create something new and exciting to fall from the sky. What he gets is a storm of sticky green goo called Oobleck—which soon wreaks havock all over his kingdom! But with the assistance of the wise page boy Bartholomew, the king (along with young readers) learns that the simplest words can sometimes solve the stickiest problems.




Fluid-Solid Reactions


Book Description

Fluid-Solid Reactions, Second Edition takes a detailed and thorough look at the scope of fluid-solid reaction systems, focusing on the four phenomena: external mass transfer, pore diffusion, chemical reaction, and adsorption/desorption. This completely revised new edition builds on the classic original edition through the introduction of cutting-edge new theories and applications, including the formulation and application of a new and convenient law that governs fluid-solid reaction kinetics. This book will be of primary interest to practicing engineers engaged in process research, development, and design in the many fields where fluid-solid reactions are critical to workflow and research. Fluid-solid reactions play a major role in the technology of most industrialized nations. These reactions encompass a very broad field, including the extraction of metals from their ores, the combustion of solid fuels, coal gasification, and the incineration of solid refuse. Features 50% new and revised content, arming researchers with the latest developments in the field Details a new unified approach to modeling the rates of fluid-solid reaction systems Authored by one of the world’s foremost experts on fluid-solid reactions and their applications in the field




Perturbation Theories for the Thermodynamic Properties of Fluids and Solids


Book Description

Perturbation theory forms an important basis for predicting the thermodynamic characteristics of real fluids and solids. This book provides a comprehensive review of current perturbation theories-as well as integral equation theories and density functional theories-for the equilibrium thermodynamic and structural properties of classical systems. Emphasizing practical applications, the book avoids complex theoretical derivations as much as possible. Appropriate for experienced researchers as well as postgraduate students, the text presents a wide-ranging yet detailed view and provides a useful guide to the application of the theories described.







Solid State Physics


Book Description

Solid State Physics




Equilibrium Statistical Physics


Book Description

This is a textbook which gradually introduces the student to the statistical mechanical study of the different phases of matter and to the phase transitions between them. Throughout, only simple models of both ordinary and soft matter are used but these are studied in full detail. The subject is developed in a pedagogical manner, starting from the basics, going from the simple ideal systems to the interacting systems, and ending with the more modern topics. The textbook provides the student with a complete overview, intentionally at an introductory level, of the theory of phase transitions. All equations and deductions are included.




Transition and Turbulence Control


Book Description

This volume contains articles based on lectures given at the Workshop on Transition and Turbulence Control, hosted by the Institute for Mathematical Sciences, National University of Singapore, 8-10 December 2004. The lecturers included 13 of the world's foremost experts in the control of transitioning and turbulent flows. The chapters cover a wide range of subjects in the broad area of flow control, and will be useful to researchers working in this area in academia, government laboratories and industry. The coverage includes control theory, passive, active and reactive methods for controlling transitional and turbulent wall-bounded flows, noise suppression and mixing enhancement of supersonic turbulent jets, compliant coatings, modern flow diagnostic systems, and swept wing instabilities.




Fundamentals and Practice in Statistical Thermodynamics


Book Description

Bridge the gap between thermodynamic theory and engineering practice with this essential textbook Thermodynamics is a discipline which straddles the fields of chemistry, physics, and engineering, and has long been a mainstay of undergraduate and graduate curricula. Conventional thermodynamics courses, however, often ignore modern developments in statistical mechanics, such as molecular simulation methods, cooperative phenomena, phase transitions, universality, as well as liquid-state and polymer theories, despite their close relevance to both fundamental research and engineering practice. Fundamentals and Practice in Statistical Thermodynamics fills this gap with an essential book that applies up-to-date statistical-mechanical techniques to address the most crucial thermodynamics problems found in chemical and materials systems. It is ideally suited to introduce a new generation of researchers and molecular engineers to modern thermodynamic topics with numerous cutting-edge applications. From Fundamentals and Practice in Statistical Thermodynamics readers will also find: An introduction to statistical-mechanical methods including molecular dynamics simulation, Monte Carlo simulation, as well as the molecular theories of phase transitions, classical fluids, electrolyte solutions, polymeric materials, and more Illustrative examples and exercise problems with solutions to facilitate student understanding Supplementary online materials covering the basics of quantum mechanics, density functional theory, variational principles of classical mechanics, intermolecular interactions, and many more subjects Fundamentals and Practice in Statistical Thermodynamics is ideal for graduate and advanced undergraduate students in chemical engineering, biomolecular engineering, environmental engineering, materials science and engineering, and all related scientific subfields of physics and chemistry.




Second RILEM International Conference on Concrete and Digital Fabrication


Book Description

This book gathers peer-reviewed contributions presented at the 2nd RILEM International Conference on Concrete and Digital Fabrication (Digital Concrete), held online and hosted by the Eindhoven University of Technology, the Netherlands from 6-9 July 2020. Focusing on additive and automated manufacturing technologies for the fabrication of cementitious construction materials, such as 3D concrete printing, powder bed printing, and shotcrete 3D printing, the papers highlight the latest findings in this fast-growing field, addressing topics like mixture design, admixtures, rheology and fresh-state behavior, alternative materials, microstructure, cold joints & interfaces, mechanical performance, reinforcement, structural engineering, durability and sustainability, automation and industrialization.




Phase Transitions in Polymers: The Role of Metastable States


Book Description

A classical metastable state possesses a local free energy minimum at infinite sizes, but not a global one. This concept is phase size independent. We have studied a number of experimental results and proposed a new concept that there exists a wide range of metastable states in polymers on different length scales where their metastability is critically determined by the phase size and dimensionality. Metastable states are also observed in phase transformations that are kinetically impeded on the pathway to thermodynamic equilibrium. This was illustrated in structural and morphological investigations of crystallization and mesophase transitions, liquid-liquid phase separation, vitrification and gel formation, as well as combinations of these transformation processes. The phase behaviours in polymers are thus dominated by interlinks of metastable states on different length scales. This concept successfully explains many experimental observations and provides a new way to connect different aspects of polymer physics.* Written by a leading scholar and industry expert* Presents new and cutting edge material encouraging innovation and future research* Connects hot topics and leading research in one concise volume