Molecular Orbitals of Transition Metal Complexes


Book Description

This book starts with the most elementary ideas of molecular orbital theory and leads the reader progressively to an understanding of the electronic structure, geometry and, in some cases, reactivity of transition metal complexes. The qualitative orbital approach, based on simple notions such as symmetry, overlap and electronegativity, is the focus of the presentation and a substantial part of the book is associated with the mechanics of the assembly of molecular orbital diagrams. The first chapter recalls the basis for electron counting in transition metal complexes. The main ligand fields (octahedral, square planar, tetrahedral, etc.) are studied in the second chapter and the structure of the "d block" is used to trace the relationships between the electronic structure and the geometry of the complexes. The third chapter studies the change in analysis when the ligands have pi-type interactions with the metal. All these ideas are then used in the fourth chapter to study a series of selected applications of varying complexity (e.g. structure and reactivity). The fifth chapter deals with the "isolobal analogy" which points out the resemblance between the molecular orbitals of inorganic and organic species and provides a bridge between these two subfields of chemistry. The last chapter is devoted to a presentation of basic Group Theory with applications to some of the complexes studied in the earlier chapters.




Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells


Book Description

Inorganic and Organometallic Transition Metal Complexes with Biological Molecules and Living Cells provides a complete overview of this important research area that is perfect for both newcomers and expert researchers in the field. Through concise chapters written and edited by esteemed experts, this book brings together a comprehensive treatment of the area previously only available through scattered, lengthy review articles in the literature. Advanced topics of research are covered, with particular focus on recent advances in the biological applications of transition metal complexes, including inorganic medicine, enzyme inhibitors, antiparasital agents, and biological imaging reagents. Geared toward researchers and students who seek an introductory overview of the field, as well as researchers working in advanced areas Focuses on the interactions of inorganic and organometallic transition metal complexes with biological molecules and live cells Foscuses on the fundamentals and their potential therapeutic and diagnostic applications Covers recent biological applications of transition metal complexes, such as anticancer drugs, enzyme inhibitors, bioconjugation agents, chemical biology tools, and bioimaging reagents




Spectral Methods in Transition Metal Complexes


Book Description

Spectral Methods in Transition Metal Complexes provides a conceptual understanding on how to interpret the optical UV-vis, vibrational EPR, and NMR spectroscopy of transition metal complexes. Metal complexes have broad applications across chemistry in the areas of drug discovery, such as anticancer drugs, sensors, special materials for specific requirements, and catalysis, so a thorough knowledge in preparation and characterization of metal complexes, while niche, is critical. Accessible to both the seasoned researcher and the graduate student alike, this book provides readers with a single source of content that addresses spectral methods in transition metal complexes. Provides readers with a single reference on metal complexes and coordination compounds Contains more than 100 figures, tables, and illustrations to aid in the retention of key concepts Authored by a scientist with nearly 40 years of experience in research and instruction




Metal-Ligand Multiple Bonds


Book Description

The only comprehensive one-volume text/reference on metal-ligand multiple bonds. Stresses the unified nature of the field and includes handy new tabulations of data. The flow within each subtopic is oxygen to nitrogen to carbon. Coverage is up-to-date--virtually every subtopic leads to interesting questions for future research. Presents information otherwise scattered through hundreds of publications.




The Chemistry of Coordination Complexes and Transition Metals


Book Description

This book covers all important nomenclature, theories of bonding and stereochemistry of coordination complexes. The authors have made an effort to inscribe the ideas knowledge, clearly and in an interesting way to benefit the readers. The complexities of Molecular Orbital theory have been explained in a very simple and easy manner. It also deals with transition and inner transition metals. Conceptually, all transition and inner transition elements form complexes which have definite geometry and show interesting properties. General and specific methods of preparation, physical and chemical properties of each element has been discussed at length. Group wise study of elements in d-block series have been explained. Important compounds, complexes and organometallic compounds of metals in different oxidation states have been given explicitly. Note: T&F does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.




Transition Metals in the Synthesis of Complex Organic Molecules


Book Description

This second edition offers easy access to the field of organotransition metal chemistry. The book covers the basics of transition metal chemistry, giving a practical introduction to organotransition reaction mechanisms.




Machine Learning in Chemistry


Book Description

Recent advances in machine learning or artificial intelligence for vision and natural language processing that have enabled the development of new technologies such as personal assistants or self-driving cars have brought machine learning and artificial intelligence to the forefront of popular culture. The accumulation of these algorithmic advances along with the increasing availability of large data sets and readily available high performance computing has played an important role in bringing machine learning applications to such a wide range of disciplines. Given the emphasis in the chemical sciences on the relationship between structure and function, whether in biochemistry or in materials chemistry, adoption of machine learning by chemistsderivations where they are important




Kinetics and Mechanism of Reactions of Transition Metal Complexes


Book Description

This thoroughly revised and updated edition of one of the classics of kinetics text books continues the successful concept of the 1974 edition: In its first part, a simplified approach to the determination of rate laws and mechnisms is given steadily working up to complex situations. In the following chapters the principles developed there are extensively used in a comprehensive account of reactions of transition metal complexes, including reactions of biological signifacance. The text is illustrated by numerous figures and tables. Points of further interest are highlighted in special insets. 140 problems, taken from the original literature, enable the student to apply and deepen his newly acquired knowledge and make the book highly useful for courses in inorganic and organometallic reaction mechanisms. Furthermore, a wealth of over 1700 references renders it an indispensable work for the active researcher.







Molecular Electronic Structures of Transition Metal Complexes I


Book Description

J.P. Dahl: Carl Johan Ballhausen (1926–2010).- J.R. Winkler and H.B. Gray: Electronic Structures of Oxo-Metal Ions.- C.D. Flint: Early Days in Kemisk Laboratorium IV and Later Studies.- J.H. Palmer: Transition Metal Corrole Coordination Chemistry. A Review Focusing on Electronic Structural Studies.- W.C. Trogler: Chemical Sensing with Semiconducting Metal Phthalocyanines.- K.M. Lancaster: Biological Outer-Sphere Coordination.- R.K. Hocking and E.I. Solomon: Ligand Field and Molecular Orbital Theories of Transition Metal X-ray Absorption Edge Transitions.- K.B. Møller and N.E. Henriksen: Time-resolved X-ray diffraction: The dynamics of the chemical bond.