Transition, Turbulence, and Noise


Book Description

Turbulence takes place in most flow situations whethertheyoccur naturally or in technological systems. Therefore, considerable effort is being expended in an attempt to understand the phenomenon of turbulence. The recent discovery ofcoherent structure in turbulent shear flows and the modem developments in computer capabilities have revolutionized research work in turbulence. There is a strong evidence that the coherent structure in turbulent shear flows is reminiscent of nonlinear stability waves. As such, the interest in nonlinear stability waves has increased not only for the understandingofthe latterstages of the laminar-turbulent transition process, but also for understanding the coherent structures in turbulent flows. Also. the advances in computers have made direct numerical simulation possible at Low-Reynolds numbers and large-eddy simulation possible at high Reynolds numbers. This made first-principles prediction of turbulence-generated noise feasible. Therefore, this book aims at presenting a graduate-level introductory study of turbulence while accounting for such recent views of concern to researchers. This book is an outgrowth oflecture notes on the subject offered to graduate students in engineering. The book should be of interest to research engineers and graduatestudents in science and engineering. The theoretical basis presented is sufficient not only for studying the specialized literature on turbulence but also for theoretical investigations on the subject.




Transition, Turbulence, and Noise


Book Description

Turbulence takes place in most flow situations whethertheyoccur naturally or in technological systems. Therefore, considerable effort is being expended in an attempt to understand the phenomenon of turbulence. The recent discovery ofcoherent structure in turbulent shear flows and the modem developments in computer capabilities have revolutionized research work in turbulence. There is a strong evidence that the coherent structure in turbulent shear flows is reminiscent of nonlinear stability waves. As such, the interest in nonlinear stability waves has increased not only for the understandingofthe latterstages of the laminar-turbulent transition process, but also for understanding the coherent structures in turbulent flows. Also. the advances in computers have made direct numerical simulation possible at Low-Reynolds numbers and large-eddy simulation possible at high Reynolds numbers. This made first-principles prediction of turbulence-generated noise feasible. Therefore, this book aims at presenting a graduate-level introductory study of turbulence while accounting for such recent views of concern to researchers. This book is an outgrowth oflecture notes on the subject offered to graduate students in engineering. The book should be of interest to research engineers and graduatestudents in science and engineering. The theoretical basis presented is sufficient not only for studying the specialized literature on turbulence but also for theoretical investigations on the subject.




Transition, Turbulence and Combustion


Book Description

These two volumes contain the proceedings of the Workshop on Transition, Turbulence and Combustion, sponsored by the Insti tute for Computer Applications in Science and Engineering (ICASE) and the NASA Langley Research Center (LaRC), during June 7 to July 2, 1993. Volume I contains the contributions from the transi tion research, and Volume II contains the contributions from both the turbulence and combustion research. This is the third workshop in the series on the subject. The first was held in 1989, the second in 1991, and their proceedings were published by Springer-Verlag under the titles "Instability and Transition" (edited by M. Y. Hussaini and R. G. Voigt) and "Instability, Transition and Turbulence" (edited by M. Y. Hussaini, A. Kumar and C. L. Streett) respectively. The objectives of these workshops are to expose the academic community to current technologically important issues of transition, turbulence and combustion, and to acquaint the academic commu nity with the unique combination of theoretical, computational and experimental capabilities at LaRC. It is hoped these will foster con tinued interactions, and accelerate progress in elucidating the funda mental phenomena of transition, turbulence and combustion. The research areas of interest in transition covered the full range of the subject: linear and nonlinear stability, direct and large-eddy simulation and phenomenological modeling of the transition zone.




Transition, Turbulence, and Noise


Book Description

Turbulence takes place in most flow situations whethertheyoccur naturally or in technological systems. Therefore, considerable effort is being expended in an attempt to understand the phenomenon of turbulence. The recent discovery ofcoherent structure in turbulent shear flows and the modem developments in computer capabilities have revolutionized research work in turbulence. There is a strong evidence that the coherent structure in turbulent shear flows is reminiscent of nonlinear stability waves. As such, the interest in nonlinear stability waves has increased not only for the understandingofthe latterstages of the laminar-turbulent transition process, but also for understanding the coherent structures in turbulent flows. Also. the advances in computers have made direct numerical simulation possible at Low-Reynolds numbers and large-eddy simulation possible at high Reynolds numbers. This made first-principles prediction of turbulence-generated noise feasible. Therefore, this book aims at presenting a graduate-level introductory study of turbulence while accounting for such recent views of concern to researchers. This book is an outgrowth oflecture notes on the subject offered to graduate students in engineering. The book should be of interest to research engineers and graduatestudents in science and engineering. The theoretical basis presented is sufficient not only for studying the specialized literature on turbulence but also for theoretical investigations on the subject.




Transition, Turbulence and Combustion Modelling


Book Description

This single-volume work gives an introduction to the fields of transition, turbulence, and combustion modeling of compressible flows and provides the physical background for today’s modeling approaches in these fields. It presents basic equations and discusses fundamental aspects of hydrodynamical instability.







Seventh IUTAM Symposium on Laminar-Turbulent Transition


Book Description

The origins of turbulent ?ow and the transition from laminar to turbulent ?ow are the most important unsolved problems of ?uid mechanics and aerodynamics. - sides being a fundamental question of ?uid mechanics, there are numerous app- cations relying on information regarding transition location and the details of the subsequent turbulent ?ow. For example, the control of transition to turbulence is - pecially important in (1) skin-friction reduction of energy ef?cient aircraft, (2) the performance of heat exchangers and diffusers, (3) propulsion requirements for - personic aircraft, and (4) separation control. While considerable progress has been made in the science of laminar to turbulent transition over the last 30 years, the c- tinuing increase in computer power as well as new theoretical developments are now revolutionizing the area. It is now starting to be possible to move from simple 1D eigenvalue problems in canonical ?ows to global modes in complex ?ows, all - companied by accurate large-scale direct numerical simulations (DNS). Here, novel experimental techniques such as modern particle image velocimetry (PIV) also have an important role. Theoretically the in?uence of non-normality on the stability and transition is gaining importance, in particular for complex ?ows. At the same time the enigma of transition in the oldest ?ow investigated, Reynolds pipe ?ow tran- tion experiment, is regaining attention. Ideas from dynamical systems together with DNS and experiments are here giving us new insights.




Instabilities, Chaos and Turbulence


Book Description

This book is an introduction to the application of nonlinear dynamics to problems of stability, chaos and turbulence arising in continuous media and their connection to dynamical systems. With an emphasis on the understanding of basic concepts, it should be of interest to nearly any science-oriented undergraduate and potentially to anyone who wants to learn about recent advances in the field of applied nonlinear dynamics. Technicalities are, however, not completely avoided. They are instead explained as simply as possible using heuristic arguments and specific worked examples.




Advances in Turbulence XII


Book Description

This volume comprises the communications presented at the EUROMECH European Turbulence Conference ETC12, held in Marburg in September 2009. The topics covered by the meeting include: Acoustics of turbulent flows, Atmospheric turbulence, Control of turbulent flows, Geophysical and astrophysical turbulence, Instability and transition, Intermittency and scaling, Large eddy simulation and related techniques, Lagrangian aspects, MHD turbulence, Reacting and compressible turbulence, Transport and mixing, Turbulence in multiphase and non-Newtonian flows, Vortex dynamics and structure, formation, Wall bounded flows.




Report


Book Description