C, H, N and O in Si and Characterization and Simulation of Materials and Processes


Book Description

Containing over 200 papers, this volume contains the proceedings of two symposia in the E-MRS series. Part I presents a state of the art review of the topic - Carbon, Hydrogen, Nitrogen and Oxygen in Silicon and in Other Elemental Semiconductors. There was strong representation from the industrial laboratories, illustrating that the topic is highly relevant for the semiconductor industry. The second part of the volume deals with a topic which is undergoing a process of convergence with two concerns that are more particularly application oriented. Firstly, the advanced instrumentation which, through the use of atomic force and tunnel microscopies, high resolution electron microscopy and other high precision analysis instruments, now allows for direct access to atomic mechanisms. Secondly, the technological development which in all areas of applications, particularly in the field of microelectronics and microsystems, requires as a result of the miniaturisation race, a precise mastery of the microscopic mechanisms.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




13th International Conference on Aluminum Alloys (ICAA 13)


Book Description

This is a collection of papers presented at the 13th International Conference on Aluminum Alloys (ICAA-13), the premier global conference for exchanging emerging knowledge on the structure and properties of aluminum materials. The papers are organized around the topics of the science of aluminum alloy design for a range of market applications; the accurate prediction of material properties; novel aluminum products and processes; and emerging developments in recycling and applications using both monolithic and multi-material solutions.




Research in Progress


Book Description




Strained Layer Epitaxy: Volume 379


Book Description

An interdisciplinary discussion of key materials issues and controversies in strained layer epitaxy is presented in this new volume from MRS. Research involving GeSi alloys and Si:C alloys are well represented. In the case of GeSi alloys, utilizing both strained and relaxed structures appears to be a strong component of the current research. Applications, devices and synthesis of improved relaxed and strained materials are featured. Special efforts to integrate the III-V and IV communities were also made during this symposium, and those efforts are reflected in the proceedings volume as well. Results on compositional graded layers in both the GeSi and III-V materials systems are presented. Topics include: general issues; ordering/low dimensional structures; characterization; device applications; growth of Si-based materials; and growth of compound semiconductors.




Physics Briefs


Book Description




The Physics and Chemistry of SiO2 and the Si-SiO2 Interface 2


Book Description

The first international symposium on the subject "The Physics and Chemistry of Si02 and the Si-Si02 Interface," organized in association with the Electrochemical Society, Inc. , was held in Atlanta, Georgia on May 15- 20, 1988. This symposium contained sixty papers and was so successful that the sponsoring divisions decided to schedule it on a regular basis every four years. Thus, the second symposium on "The Physics and Chemistry of Si02 and the Si02 Interface was held May 18-21, 1992 in St. Louis, Missouri, again sponsored by the Electronics and Dielectrics Science and Technology Divisions of The Electrochemical Society. This volume contains manuscripts of most of the fifty nine papers presented at the 1992 symposium, and is divided into eight chapters - approximating the organization of the symposium. Each chapter is preceded with an introduction by the session organizers. It is appropriate to provide a general assessment of the current status and understanding of the physics and chemistry of Si02 and the Si02 interface before proceeding with a brief overview of the individual chapters. Semiconductor devices have continued to scale down in both horizontal and vertical dimensions. This has resulted in thinner gate and field oxides as well as much closer spacing of individual device features. As a result, surface condition, native oxide composition, and cleaning and impurity effects now provide a much more significant contribution to the properties of oxides and their interfaces.




Photonic Integration and Photonics-Electronics Convergence on Silicon Platform


Book Description

Silicon photonics technology, which has the DNA of silicon electronics technology, promises to provide a compact photonic integration platform with high integration density, mass-producibility, and excellent cost performance. This technology has been used to develop and to integrate various photonic functions on silicon substrate. Moreover, photonics-electronics convergence based on silicon substrate is now being pursued. Thanks to these features, silicon photonics will have the potential to be a superior technology used in the construction of energy-efficient cost-effective apparatuses for various applications, such as communications, information processing, and sensing. Considering the material characteristics of silicon and difficulties in microfabrication technology, however, silicon by itself is not necessarily an ideal material. For example, silicon is not suitable for light emitting devices because it is an indirect transition material. The resolution and dynamic range of silicon-based interference devices, such as wavelength filters, are significantly limited by fabrication errors in microfabrication processes. For further performance improvement, therefore, various assisting materials, such as indium-phosphide, silicon-nitride, germanium-tin, are now being imported into silicon photonics by using various heterogeneous integration technologies, such as low-temperature film deposition and wafer/die bonding. These assisting materials and heterogeneous integration technologies would also expand the application field of silicon photonics technology. Fortunately, silicon photonics technology has superior flexibility and robustness for heterogeneous integration. Moreover, along with photonic functions, silicon photonics technology has an ability of integration of electronic functions. In other words, we are on the verge of obtaining an ultimate technology that can integrate all photonic and electronic functions on a single Si chip. This e-Book aims at covering recent developments of the silicon photonic platform and novel functionalities with heterogeneous material integrations on this platform.