Inverse Problems in Quantum Scattering Theory


Book Description

The normal business of physicists may be schematically thought of as predic ting the motions of particles on the basis of known forces, or the propagation of radiation on the basis of a known constitution of matter. The inverse problem is to conclude what the forces or constitutions are on the basis of the observed motion. A large part of our sensory contact with the world around us depends on an intuitive solution of such an inverse problem: We infer the shape, size, and surface texture of external objects from their scattering and absorption of light as detected by our eyes. When we use scattering experiments to learn the size or shape of particles, or the forces they exert upon each other, the nature of the problem is similar, if more refined. The kinematics, the equations of motion, are usually assumed to be known. It is the forces that are sought, and how they vary from point to point. As with so many other physical ideas, the first one we know of to have touched upon the kind of inverse problem discussed in this book was Lord Rayleigh (1877). In the course of describing the vibrations of strings of variable density he briefly discusses the possibility of inferring the density distribution from the frequencies of vibration. This passage may be regarded as a precursor of the mathematical study of the inverse spectral problem some seventy years later.




Transmutation Operators and Applications


Book Description

Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.




Special Functions: Group Theoretical Aspects and Applications


Book Description

Approach your problems from It isn't that they can't see the right end and begin with the solution. the answers. Then one day, It is that they can't see the perhaps you will find the problem. final question. G.K. Chesterton. The Scandal 'The Hermit Clad in Crane of Father Brown 'The Point of Feathers' in R. van Gulik's a Pin'. The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging SUbdisciplines as "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.




Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics


Book Description

Transmutations, Singular and Fractional Differential Equations with Applications to Mathematical Physics connects difficult problems with similar more simple ones. The book's strategy works for differential and integral equations and systems and for many theoretical and applied problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods. In addition to being exposed to recent advances, readers learn to use transmutation methods not only as practical tools, but also as vehicles that deliver theoretical insights. - Presents the universal transmutation method as the most powerful for solving many problems in mathematics, mathematical physics, probability and statistics, applied computer science and numerical methods - Combines mathematical rigor with an illuminating exposition full of historical notes and fascinating details - Enables researchers, lecturers and students to find material under the single "roof"




Spectral Theory of Differential Operators


Book Description

Spectral Theory of Differential Operators




Generalized Fractional Calculus and Applications


Book Description

In this volume various applications are discussed, in particular to the hyper-Bessel differential operators and equations, Dzrbashjan-Gelfond-Leontiev operators and Borel type transforms, convolutions, new representations of hypergeometric functions, solutions to classes of differential and integral equations, transmutation method, and generalized integral transforms. Some open problems are also posed. This book is intended for graduate and post-graduate students, lecturers, researchers and others working in applied mathematical analysis, mathematical physics and related disciplines.










Transmutation Theory and Applications


Book Description

Transmutation Theory and Applications