Transport Across the Boundaries of the Magnetosphere


Book Description

The present volume is the second one in the Space Sciences Series of ISSI (Inter national Space Science Institute) and the October 1997 issue of Space Science Reviews. It contains the proceedings of the first workshop in the ISSI study project on "Source and Loss Processes of Magnetospheric Plasma", which was held at ISSI in Bern on October 1-5, 1996. The participants in the project, the project team, numbered at that time 51, of whom 45 participated in the workshop. The main tasks of the first workshop were to provide a basis for the further work by means of presentation and discussion of those 16 review papers which are pub lished in this volume and to prepare plans for the work of six working groups in the year up to the second workshop in October 1997. The ISSI study project on "Source and Loss Processes of Magnetospheric Plas ma" was selected by ISSI in December 1995 as the first in the solar-terrestrial physics field after consulting a number of groups of senior scientists represent ing the international space physics community at large. The undersigned, Bengt Hultqvist, is the project leader. A Core Group, consisting of two co-chairs for each of six working groups and four ex-officio members from the Space Science Com mittee of ISSI (H. Balsiger, A. Galeev, G. Haerendel, and D. Southwood), con vened at ISSI in March 1996.




Space Physics and Aeronomy, Magnetospheres in the Solar System


Book Description

An overview of current knowledge and future research directions in magnetospheric physics In the six decades since the term 'magnetosphere' was first introduced, much has been theorized and discovered about the magnetized space surrounding each of the bodies in our solar system. Each magnetosphere is unique yet behaves according to universal physical processes. Magnetospheres in the Solar System brings together contributions from experimentalists, theoreticians, and numerical modelers to present an overview of diverse magnetospheres, from the mini-magnetospheres of Mercury to the giant planetary magnetospheres of Jupiter and Saturn. Volume highlights include: Concise history of magnetospheres, basic principles, and equations Overview of the fundamental processes that govern magnetospheric physics Tools and techniques used to investigate magnetospheric processes Special focus on Earth’s magnetosphere and its dynamics Coverage of planetary magnetic fields and magnetospheres throughout the solar system Identification of future research directions in magnetospheric physics The American Geophysical Union promotes discovery in Earth and space science for the benefit of humanity. Its publications disseminate scientific knowledge and provide resources for researchers, students, and professionals. Find out more about the Space Physics and Aeronomy collection in this Q&A with the Editors in Chief




Outer Magnetospheric Boundaries: Cluster Results


Book Description

When the stream of plasma emitted from the Sun (the solar wind) encounters Earth's magnetic field, it slows down and flows around it, leaving behind a cavity, the magnetosphere. The magnetopause is the surface that separates the solar wind on the outside from the Earth's magnetic field on the inside. Because the solar wind moves at supersonic speed, a bow shock must form ahead of the magnetopause that acts to slow the solar wind to subsonic speeds. Magnetopause, bow shock and their environs are rich in exciting processes in collisionless plasmas, such as shock formation, magnetic reconnection, particle acceleration and wave-particle interactions. They are interesting in their own right, as part of Earth's environment, but also because they are prototypes of similar structures and phenomena that are ubiquitous in the universe, having the unique advantage that they are accessible to in situ measurements. The boundaries of the magnetosphere have been the target of direct in-situ measurements since the beginning of the space age. But because they are constantly moving, changing their orientation, and undergoing evolution, the interpretation of single-spacecraft measurements has been plagued by the fundamental inability of a single observer to unambiguously distinguish spatial from temporal changes. The boundaries are thus a prime target for the study by a closely spaced fleet of spacecraft. Thus the Cluster mission, with its four spacecraft in a three-dimensional configuration at variable separation distances, represents a giant step forward. The present 20th volume of the ISSI Space Science Series represents the first synthesis of the exciting new results obtained in the first few years of the Cluster mission.




Literature 1997, Part 1


Book Description

Astronomy and Astrophysics Abstracts is devoted to the recording, summarizing and indexing of astronomical publications throughout the world. Two volumes are scheduled to appear per year. Volume 67 records 10,903 papers covering besides the classical fields of astronomy and astrophysics such matters as space flights related to astronomy, lunar and planetary probes and satellites, meteorites and interplanetary matter, X rays and cosmic rays, quasars and pulsars. The abstracts are classified under more than one hundred subject categories thus permitting quick surveying of the bulk of material published on the same topic within six months. For instance, this volume records 119 papers on minor planets, 155 papers on supernovae, and 554 papers on cosmology.




Dynamics of the Magnetosphere


Book Description

The Los Alamos Chapman Conference on Magnetospheric Substorms and Related Plasma Processes can be considered the fourth in a series devoted to magnetospheric substorms, after the Moscow (1971), Houston (1972), and Bryce Mountain (1974) meetings. The main motivation for organizing the Los Alamos Conference was that magnetospheric substorm studies have advanced enough to the point of bringing experimenters, analysts and theorists together to discuss major substorm problems with special emphasis on theoretical interpretations in terms of plasma processes. In spite of an extremely heavy schedule from 8:30 A.M. to 10:00 P.M., every session was conducted in an enjoyable and spirited atmosphere. In fact, during one of the afternoons that we had put aside for relaxation, John Winckler led a group of the attendees in a climb to the ceremonial cave of a prehistoric Indian ruin at Bandelier National Monument, near Los Alamos under a crystal blue sky and a bright New Mexico sun. There, they danced as the former dwellers of the pueblo had, perhaps as an impromptu evocation of a magnetospheric event.




The Century of Space Science


Book Description

One of the most attractive features of the young discipline of Space Science is that many of the original pioneers and key players involved are still available to describe their field. Hence, at this point in history we are in a unique position to gain first-hand insight into the field and its development. To this end, The Century of Space Science, a scholarly, authoritative, reference book presents a chapter-by-chapter retrospective of space science as studied in the 20th century. The level is academic and focuses on key discoveries, how these were arrived at, their scientific consequences and how these discoveries advanced the thoughts of the key players involved. With over 90 world-class contributors, such as James Van Allen, Cornelis de Jager, Eugene Parker, Reimar Lüst, and Ernst Stuhlinger, and with a Foreword by Lodewijk Woltjer (past ESO Director General), this book will be immensely useful to readers in the fields of space science, astronomy, and the history of science. Both academic institutions and researchers will find that this major reference work makes an invaluable addition to their collection.




Plasma Sources of Solar System Magnetospheres


Book Description

This volume reviews what we know of the corresponding plasma source for each intrinsically magnetized planet. Plasma sources fall essentially in three categories: the solar wind, the ionosphere (both prevalent on Earth), and the satellite-related sources. Throughout the text, the case of each planet is described, including the characteristics, chemical composition and intensity of each source. The authors also describe how the plasma generated at the source regions is transported to populate the magnetosphere, and how it is later lost. To summarize, the dominant sources are found to be the solar wind and sputtered surface ions at Mercury, the solar wind and ionosphere at Earth (the relative importance of the two being discussed in a specific introductory chapter), Io at Jupiter and – a big surprise of the Cassini findings – Enceladus at Saturn. The situation for Uranus and Neptune, which were investigated by only one fly-by each, is still open and requires further studies and exploration. In the final chapter, the book offers a summary of the little we know of Uranus and Neptune, then summarizes in a comparative way what we know of plasma sources throughout the solar system, and proposes directions for future research.




Kinetic Alfvén Waves in Laboratory, Space, and Astrophysical Plasmas


Book Description

This book provides a systematic introduction to the observation and application of kinetic Alfven waves (KAWs) in various plasma environments, with a special focus on the solar-terrestrial coupling system. Alfven waves are low-frequency and long-wavelength fluctuations that pervade laboratory, space and cosmic plasmas. KAWs are dispersive Alfven waves with a short wavelength comparable to particle kinematic scales and hence can play important roles in the energization and transport of plasma particles, the formation of fine magneto-plasma structures, and the dissipation of turbulent Alfven waves. Since the 1990s, experimental studies on KAWs in laboratory and space plasmas have significantly advanced our understanding of KAWs, making them an increasingly interesting subject. Without a doubt, the solar–terrestrial coupling system provides us with a unique natural laboratory for the comprehensive study of KAWs. This book presents extensive observations of KAWs in solar and heliospheric plasmas, as well as numerous applications of KAWs in the solar-terrestrial coupling system, including solar atmosphere heating, solarwind turbulence, solar wind-magnetosphere interactions, and magnetosphere-ionosphere coupling. In addition, for the sake of consistency, the book includes the basic theories and physical properties of KAWs, as well as their experimental demonstrations in laboratory plasmas. In closing, it discusses possible applications of KAWs to other astrophysical plasmas. Accordingly, the book covers all the major aspects of KAWs in a coherent manner that will appeal to advanced graduate students and researchers whose work involves laboratory, space and astrophysical plasmas.




Space Physics and Aeronomy, Magnetospheres in the Solar System


Book Description

Überblick über den aktuellen Wissensstand und künftige Forschungsrichtungen in der Magnetosphärenphysik In den sechs Jahrzehnten seit der Einführung des Begriffs ?Magnetosphäre? sind über den magnetisierten Raum, der jeden Körper in unserem Sonnensystem umgibt, viele Theorien entstanden und viele Erkenntnisse gewonnen worden. Jede Magnetosphäre ist einzigartig und verhält sich doch entsprechend den universellen physikalischen Vorgängen. Der Band ?Magnetospheres in the Solar System? enthält Beiträge von Experten für Experimentalphysik, theoretische Physik und numerische Modellierung, die einen Überblick über verschiedene Magnetosphären vermitteln, von der winzigen Magnetosphäre des Merkur bis zu den gewaltigen planetarischen Magnetosphären von Jupiter und Saturn. Das Werk bietet insbesondere: * Einen kompakten Überblick über die Geschichte der Magnetosphäre, ihre Grundsätze und Gleichungen * Eine Zusammenfassung der grundlegenden Prozesse in der Magnetospährenphysik * Instrumente und Techniken zur Untersuchung von Prozessen in der Magnetosphäre * Eine besondere Schwerpunktsetzung auf die Magnetosphäre der Erde und ihre Dynamik * Eine Darstellung der planetaren Magnetfelder und Magnetosphären im gesamten Sonnensystem * Eine Definition der künftigen Forschungsrichtungen in der Magnetosphärenphysik Die Amerikanische Geophysikalische Vereinigung fördert die wissenschaftliche Erforschung der Erde und des Weltraums zum Wohle der Menschheit. In ihren Publikationen werden wissenschaftliche Erkenntnisse veröffentlicht, die Forschern, Studenten und Fachkräften zur Verfügung stehen.