Disposition of High-Level Radioactive Waste Through Geological Isolation


Book Description

During the next several years, decisions are expected to be made in several countries on the further development and implementation of the geological disposition option. The Board on Radioactive Waste Management (BRWM) of the U.S. National Academies believes that informed and reasoned discussion of relevant scientific, engineering and social issues can-and should-play a constructive role in the decision process by providing information to decision makers on relevant technical and policy issues. A BRWM-initiated project including a workshop at Irvine, California on November 4-5, 1999, and subsequent National Academies' report to be published in spring, 2000, are intended to provide such information to national policy makers both in the U.S. and abroad. To inform national policies, it is essential that experts from the physical, geological, and engineering sciences, and experts from the policy and social science communities work together. Some national programs have involved social science and policy experts from the beginning, while other programs have only recently recognized the importance of this collaboration. An important goal of the November workshop is to facilitate dialogue between these communities, as well as to encourage the sharing of experiences from many national programs. The workshop steering committee has prepared this discussion for participants at the workshop. It should elicit critical comments and help identify topics requiring in-depth discussion at the workshop. It is not intended as a statement of findings, conclusions, or recommendations. It is rather intended as a vehicle for stimulating dialogue among the workshop participants. Out of that dialogue will emerge the findings, conclusions, and recommendations of the National Academies' report.




Strategy and Methodology for Radioactive Waste Characterization


Book Description

Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.













Atomic Geography


Book Description

Perhaps the first environmental engineer at Hanford, Melvin R. Adams spent 24 years on its 586 square miles of desert terrain. His thoughtful vignettes recall challenges and sites he worked on or found personally intriguing--like the 216-U-pond, contaminated with plutonium longer than any place on earth. In what Adams considers his most successful project, he helped determine the initial scope of the soil and solid waste cleanup. His group also designed and tested a marked, maintenance-free disposal barrier, expanded a network of groundwater monitoring wells, and developed a pilot scale pump and treatment plant. Adams shares his perspective on leaking high-level waste storage tanks, dosimeters, and Hanford¿s obsession with safety. He even answers his least favorite question, insisting he does not glow in the dark. He leaves that unique ability to spent fuel rods in water storage basins--a phenomenon known as Cherenkov radiation.




Radioactive Waste Forms for the Future


Book Description

This volume presents a compilation of important information on the full range of radioactive waste forms that have been developed, or at least suggested, for the incorporation of high-level nuclear waste. Many of the results were published in the ''gray literature'' of final reports of national laboratories or in various, generally less available, proceedings volumes. This is the first publication to draw information on nuclear waste forms for high-level wastes together into a single volume. Although borosilicate glass has become the standard waste form, additional research in this compound is still necessary. With improved technology (particularly processing technologies) and with a more detailed knowledge of repository conditions, glasses and second generation waste forms with improved performance properties can be developed. Sustained research programs on nuclear waste form development will yield results that can only add to public confidence and the final, safe disposal of nuclear waste. The aim of this volume is to provide a 'spring board' for these future research efforts. A detailed presentation is given on the properties and performance of non-crystalline waste forms (borosilicate glass, sintered glass, and lead-iron phosphate glass), and crystalline waste forms (Synroc, tailored ceramics, TiO 2 - ceramic matrix, glass-ceramics and FUETAP concrete). A chapter on Novel Waste Forms reviews a number of methods that warrant further development because of their potential superior performance and unique applications. The final chapter includes a tabulated comparison of important waste form properties and an extended discussion on the corrosion process and radiation damage effects for each waste form. Of particular interest is a performance assessment of nuclear waste borosilicate glass and the crystalline ceramic Synroc. This is the first detailed attempt to compare these two important waste forms on the basis of their materials properties. The discussion emphasizes the difficulties in making such a comparison and details the types of data that are required. Each chapter has been written by an expert and includes a current compilation of waste form properties with an extensive list of references. This volume will provide a stimulus for future research as well as useful reference material for scientists working in the field of nuclear waste disposal and materials science.




Plutopia


Book Description

In Plutopia, Brown draws on official records and dozens of interviews to tell the stories of Richland, Washington and Ozersk, Russia-the first two cities in the world to produce plutonium. To contain secrets, American and Soviet leaders created plutopias--communities of nuclear families living in highly-subsidized, limited-access atomic cities. Brown shows that the plants' segregation of permanent and temporary workers and of nuclear and non-nuclear zones created a bubble of immunity, where dumps and accidents were glossed over and plant managers freely embezzled and polluted. In four decades, the Hanford plant near Richland and the Maiak plant near Ozersk each issued at least 200 million curies of radioactive isotopes into the surrounding environment--equaling four Chernobyls--laying waste to hundreds of square miles and contaminating rivers, fields, forests, and food supplies. Because of the decades of secrecy, downwind and downriver neighbors of the plutonium plants had difficulty proving what they suspected, that the rash of illnesses, cancers, and birth defects in their communities were caused by the plants' radioactive emissions. Plutopia was successful because in its zoned-off isolation it appeared to deliver the promises of the American dream and Soviet communism; in reality, it concealed disasters that remain highly unstable and threatening today. -- From publisher description.