Water Purification


Book Description

Water Purification, a volume in the Nanotechnology in the Food Industry series, provides an in-depth review of the current technologies and emerging application of nanotechnology in drinking water purification, also presenting an overview of the common drinking water contaminants, such as heavy metals, organics, microorganisms, pharmaceuticals, and their occurrences in drinking water sources. As the global water crisis has motivated the industry to look for alternative water supplies, nanotechnology presents significant potential for utilizing previously unacceptable water sources. This books explores the practical methodologies for transforming water using nanotechnologies, and is a comprehensive reference to a wide audience of food science research professionals, professors, and students who are doing research in this field. - Includes the most up-to-date information on nanotechnology applications and research methods for water purification and treatment - Presents applications of nanotechnology and engineered nanomaterials in drinking water purification to improve efficiency and reduce cost - Provides water purification research methods that are important to water quality, including precipitation, adsorption, membrane separation, and ion exchange - Covers the potential risks of nanotechnology, such as the toxicological effects of engineered nanomaterials in water and how to minimize risks based on research studies




Water Treatment for Purification from Cyanobacteria and Cyanotoxins


Book Description

Provides a comprehensive overview of key methods for treating water tainted by cyanobacteria and cyanotoxins Toxigenic cyanobacteria are one of the main health risks associated with water resources. Consequently, the analysis, control, and removal of cyanobacteria and cyanotoxins from water supplies is a high priority research area. This book presents a comprehensive review of the state-of-the-art research on water treatment methods for the removal of cyanobacteria, taste and odor compounds, and cyanotoxins. Starting with an introduction to the subject, Water Treatment for Purification from Cyanobacteria and Cyanotoxins offers chapters on cyanotoxins and human health, conventional physical-chemical treatment for the removal of cyanobacteria/cyanotoxins, removal of cyanobacteria and cyanotoxins by membrane processes, biological treatment for the destruction of cyanotoxins, and conventional disinfection and/or oxidation processes. Other chapters look at advanced oxidation processes, removal/destruction of taste and odour compounds, transformation products of cyanobacterial metabolites during treatment and integrated drinking water processes. Provides a comprehensive overview of key methods for treating water tainted by cyanobacteria and cyanotoxins Bridges the gap between basic knowledge of cyanobacteria/cyanotoxins and practical management guidelines Includes integrated processes case studies and real-life examples Developed within the frame of the European Cooperation in Science and Technology (COST)–funded CYANOCOST A must-have resource for every water treatment plant, Water Treatment for Purification from Cyanobacteria and Cyanotoxins is a valuable resource for all researchers in water chemistry and engineering, environmental chemistry as well as water companies and authorities, water resource engineers and managers, environmental and public health protection organizations.




Coagulation and Flocculation in Water and Wastewater Treatment


Book Description

Coagulation and Flocculation in Water and Wastewater Treatment provides a comprehensive account of coagulation and flocculation techniques and technologies in a single volume covering theoretical principles to practical applications. Thoroughly revised and updated since the 1st Edition it has been progressively modified and increased in scope to cater for the requirements of practitioners involved with water and wastewater treatment. A thorough gamut of treatment scenarios is attempted, including turbidity, color and organics removal, including the technical aspects of enhanced coagulation. The effects of temperature and ionic content are described as well as the removal of specific substances such as arsenic and phosphorus. Chemical phosphorus removal is dealt with in detail, Rapid mixing for efficient coagulant utilization, and flocculation are dealt with in specific chapters. Water treatment plant waste sludge disposal is dealt with in considerable detail, in an Appendix devoted to this subject. Invaluble for water scientists, engineers and students of this field, Coagulation and Flocculation in Water and Wastewater Treatment is a convenient reference handbook in the form of numerous examples and appended information.







Quantitative Microbial Risk Assessment


Book Description

Provides the latest QMRA methodologies to determine infection risk cause by either accidental microbial infections or deliberate infections caused by terrorism • Reviews the latest methodologies to quantify at every step of the microbial exposure pathways, from the first release of a pathogen to the actual human infection • Provides techniques on how to gather information, on how each microorganism moves through the environment, how to determine their survival rates on various media, and how people are exposed to the microorganism • Explains how QMRA can be used as a tool to measure the impact of interventions and identify the best policies and practices to protect public health and safety • Includes new information on genetic methods • Techniques use to develop risk models for drinking water, groundwater, recreational water, food and pathogens in the indoor environment




Assessment of Treatment Plant Performance and Water Quality Data: A Guide for Students, Researchers and Practitioners


Book Description

This book presents the basic principles for evaluating water quality and treatment plant performance in a clear, innovative and didactic way, using a combined approach that involves the interpretation of monitoring data associated with (i) the basic processes that take place in water bodies and in water and wastewater treatment plants and (ii) data management and statistical calculations to allow a deep interpretation of the data. This book is problem-oriented and works from practice to theory, covering most of the information you will need, such as (a) obtaining flow data and working with the concept of loading, (b) organizing sampling programmes and measurements, (c) connecting laboratory analysis to data management, (e) using numerical and graphical methods for describing monitoring data (descriptive statistics), (f) understanding and reporting removal efficiencies, (g) recognizing symmetry and asymmetry in monitoring data (normal and log-normal distributions), (h) evaluating compliance with targets and regulatory standards for effluents and water bodies, (i) making comparisons with the monitoring data (tests of hypothesis), (j) understanding the relationship between monitoring variables (correlation and regression analysis), (k) making water and mass balances, (l) understanding the different loading rates applied to treatment units, (m) learning the principles of reaction kinetics and reactor hydraulics and (n) performing calibration and verification of models. The major concepts are illustrated by 92 fully worked-out examples, which are supported by 75 freely-downloadable Excel spreadsheets. Each chapter concludes with a checklist for your report. If you are a student, researcher or practitioner planning to use or already using treatment plant and water quality monitoring data, then this book is for you! 75 Excel spreadsheets are available to download.




Chemistry of Ozone in Water and Wastewater Treatment


Book Description

Even though ozone has been applied for a long time for disinfection and oxidation in water treatment, there is lack of critical information related to transformation of organic compounds. This has become more important in recent years, because there is considerable concern about the formation of potentially harmful degradation products as well as oxidation products from the reaction with the matrix components. In recent years, a wealth of information on the products that are formed has accumulated, and substantial progress in understanding mechanistic details of ozone reactions in aqueous solution has been made. Based on the latter, this may allow us to predict the products of as yet not studied systems and assist in evaluating toxic potentials in case certain classes are known to show such effects. Keeping this in mind, Chemistry of Ozone in Water and Wastewater Treatment: From Basic Principles to Applications discusses mechanistic details of ozone reactions as much as they are known to date and applies them to the large body of studies on micropollutant degradation (such as pharmaceuticals and endocrine disruptors) that is already available. Extensively quoting the literature and updating the available compilation of ozone rate constants gives the reader a text at hand on which his research can be based. Moreover, those that are responsible for planning or operation of ozonation steps in drinking water and wastewater treatment plants will find salient information in a compact form that otherwise is quite disperse. A critical compilation of rate constants for the various classes of compounds is given in each chapter, including all the recent publications. This is a very useful source of information for researchers and practitioners who need kinetic information on emerging contaminants. Furthermore, each chapter contains a large selection of examples of reaction mechanisms for the transformation of micropollutants such as pharmaceuticals, pesticides, fuel additives, solvents, taste and odor compounds, cyanotoxins. Authors: Prof. Dr. Clemens von Sonntag, Max-Planck-Institut für Bioanorganische Chemie, Mülheim an der Ruhr, and Instrumentelle Analytische Chemie, Universität Duisburg-Essen, Essen, Germany and Prof. Dr. Urs von Gunten, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, and Ecole Polytechnique Federal de Lausanne, Lausanne, Switzerland.




Water Treatment and Pathogen Control


Book Description

Annotation This publication provides a critical analysis of the literature on removal and inactivation of pathogenic microbes in water to aid the water quality specialist and design engineer in making decisions regarding microbial water quality.




Management of Legionella in Water Systems


Book Description

Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.