Treatment of Radioactive Waste Using Composite Ion Exchanger


Book Description

The long-lived radionuclides in radioactive waste have been considered to be dangerous pollutants, and their migration with groundwater is strongly affected by adsorption on the geologic materials. The presence of radionuclides and toxic metals in wastes is a major environmental concern. Such wastes arise from technologies producing nuclear fuels, and from laboratories working with radioactive materials. Various treatment technologies have been developed for the removal of heavy metals from water. The commonly used technologies for removing metal ions from effluents include chemical precipitation, lime coagulation, ion exchange. Synthetic organic-inorganic composite cation-exchange materials have received a great deal of attention because of their stability and reproducible analytical and electroanalytical applications. Organic polymers of composite material provide the mechanical strength and increase the surface area for more available exchangeable sites of the inorganic part. Nano composites of organic-inorganic cation-exchange materials prepared by sol-gel method are advance class of materials that are expected to provide many possibilities.




Application of Ion Exchange Processes for the Treatment of Radioactive Waste and Management of Spent Ion Exchangers


Book Description

Ion exchange is one of the most common and effective treatment methods for liquid radioactive waste. This book reviews the current literature on the subject and reports on the existing state of the art of the application of ion exchange processes for liquid radioactive waste treatments and of the management of spent ion exchange media.







Chemical Separation Technologies and Related Methods of Nuclear Waste Management


Book Description

Separation technologies are of crucial importance to the goal of significantly reducing the volume of high-level nuclear waste, thereby reducing the long-term health risks to mankind. International co-operation, including the sharing of concepts and methods, as well as technology transfer, is essential in accelerating research and development in the field. The writers of this book are all internationally recognised experts in the field of separation technology, well qualified to assess and criticize the current state of separation research as well as to identify future opportunities for the application of separation technologies to the solution of nuclear waste management problems. The major emphases in the book are research opportunities in the utilization of innovative and potentially more efficient and cost effective processes for waste processing/treatment, actinide speciation/separation methods, technological processing, and environmental restoration.







An Introduction to Nuclear Waste Immobilisation


Book Description

Safety and environmental impact is of uppermost concern when dealing with the movement and storage of nuclear waste. The 20 chapters in 'An Introduction to Nuclear Waste Immobilisation' cover all important aspects of immobilisation, from nuclear decay, to regulations, to new technologies and methods. Significant focus is given to the analysis of the various matrices used in transport: cement, bitumen and glass, with the greatest attention being given to glass. The last chapter concentrates on the performance assessment of each matrix, and on new developments of ceramics and glass composite materials, thermochemical methods and in-situ metal matrix immobilisation. The book thoroughly covers all issues surrounding nuclear waste: from where to locate nuclear waste in the environment, through nuclear waste generation and sources, treatment schemes and technologies, immobilisation technologies and waste forms, disposal and long term behaviour. Particular attention is paid to internationally approved and worldwide-applied approaches and technologies. * Each chapter focuses on a different matrix used in nuclear waste immobilisation: Cement, bitumen, glass and new materials. * Keeps the most important issues surrounding nuclear waste – such as treatment schemes and technologies, and disposal - at the forefront.







Cement Based Materials


Book Description

Cement-based materials have been used by humans nearly since the dawn of civilization. The Egyptians used lime and gypsum cement to bind their aggregate materials, mud and straw, resulting in bricks that are used for building their famous Egyptian pyramids (between 3000 and 2500 BC). Hydrated cement is a cement material bonded together with water and used for building construction; it is characterized by acceptable chemical, physical, thermal, mechanical, and structural stability. It plays a main role in the creation of vessels for storage, roads to travel on, weather-resistant structure for protection, inert hard stabilizer for hazardous wastes, and so on. Due to the composition of these materials and their advantages, it has been practiced in different applications. Cement is an essential component of making concrete, the single most prevalent building material used worldwide for construction, skyscrapers, highways, tunnels, bridges, hydraulic dams, and railway ties. Besides their numerous desired properties, there are some undesirable features. To overcome these disadvantages, several studies were established to prepare, improve, and evaluate innovative cement-based materials. Despite its oldness and deep research, every year several methods and materials evolve and so do cement technology. This book intends to provide a comprehensive overview on recent advances in the evaluation of these materials.




Treatment of Industrial Effluents


Book Description

To address the issue of discharge of untreated industrial effluent in the water body causing pollution, adoption of cleaner production technologies and waste minimization initiatives are being encouraged. The book explains each related technology elaborately and critically analyses the same from practical application point of view. In-depth characterization, environmental and health effects and treatment of various industrial effluents are discussed with case studies. Limitations, challenges and remedial actions to be taken are included at the end of each chapter. Chapters are arranged as per specific type of effluents from various industries like textile, tannery/leather plant, and oil refinery.