Trends And Developments In Ordinary Differential Equations - Proceedings Of The International Symposium


Book Description

In this volume which honors Professors W A Harris, Jr, M Iwano, Y Sibuya, active researchers from around the world report on their latest research results. Topics include Analytic Theory of Linear and Nonlinear Differential Equations, Asymptotic Expansions, Turning Points Theory, Special Functions, Delay Equations, Boundary Value Problems, Sturm-Liouville Eigenvalues, Periodic Solutions, Numerical Solutions and other areas of Applied Mathematics.







Differential Equations and Nonlinear Mechanics


Book Description

The International Conference on Differential Equations and Nonlinear Mechanics was hosted by the University of Central Florida in Orlando from March 17-19, 1999. One of the conference days was dedicated to Professor V. Lakshmikantham in th honor of his 75 birthday. 50 well established professionals (in differential equations, nonlinear analysis, numerical analysis, and nonlinear mechanics) attended the conference from 13 countries. Twelve of the attendees delivered hour long invited talks and remaining thirty-eight presented invited forty-five minute talks. In each of these talks, the focus was on the recent developments in differential equations and nonlinear mechanics and their applications. This book consists of 29 papers based on the invited lectures, and I believe that it provides a good selection of advanced topics of current interest in differential equations and nonlinear mechanics. I am indebted to the Department of Mathematics, College of Arts and Sciences, Department of Mechanical, Materials and Aerospace Engineering, and the Office of International Studies (of the University of Central Florida) for the financial support of the conference. Also, to the Mathematics Department of the University of Central Florida for providing secretarial and administrative assistance. I would like to thank the members of the local organizing committee, Jeanne Blank, Jackie Callahan, John Cannon, Holly Carley, Brad Pyle, Pete Rautenstrauch, and June Wingler for their assistance. Thanks are also due to the conference organizing committee, F. H. Busse, J. R. Cannon, V. Girault, R. H. J. Grimshaw, P. N. Kaloni, V.







Index of Conference Proceedings


Book Description




Ordinary Differential Operators


Book Description

In 1910 Herman Weyl published one of the most widely quoted papers of the 20th century in Analysis, which initiated the study of singular Sturm-Liouville problems. The work on the foundations of Quantum Mechanics in the 1920s and 1930s, including the proof of the spectral theorem for unbounded self-adjoint operators in Hilbert space by von Neumann and Stone, provided some of the motivation for the study of differential operators in Hilbert space with particular emphasis on self-adjoint operators and their spectrum. Since then the topic developed in several directions and many results and applications have been obtained. In this monograph the authors summarize some of these directions discussing self-adjoint, symmetric, and dissipative operators in Hilbert and Symplectic Geometry spaces. Part I of the book covers the theory of differential and quasi-differential expressions and equations, existence and uniqueness of solutions, continuous and differentiable dependence on initial data, adjoint expressions, the Lagrange Identity, minimal and maximal operators, etc. In Part II characterizations of the symmetric, self-adjoint, and dissipative boundary conditions are established. In particular, the authors prove the long standing Deficiency Index Conjecture. In Part III the symmetric and self-adjoint characterizations are extended to two-interval problems. These problems have solutions which have jump discontinuities in the interior of the underlying interval. These jumps may be infinite at singular interior points. Part IV is devoted to the construction of the regular Green's function. The construction presented differs from the usual one as found, for example, in the classical book by Coddington and Levinson.







Proceedings of the Third International Colloquium on Differential Equations


Book Description

The Third International Colloquium on Differential Equations was organized by UNESCO and the Plovdiv Technical University, with the help of many international mathematical organizations, and was held in Plovdiv, Bulgaria, 18--22 August 1992. This proceedings volume contains selected invited talks which deal with the following topics: -- impulsive differential equations -- nonlinear differential equations -- differential equations with maxima -- applications of differential equations




Cumulative Book Index


Book Description

A world list of books in the English language.




Applied Stochastic Differential Equations


Book Description

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.