Trends and Topics in Computer Vision


Book Description

The two volumes LNCS 6553 and 6554 constitute the refereed post-proceedings of 7 workshops held in conjunction with the 11th European Conference on Computer Vision, held in Heraklion, Crete, Greece in September 2010. The 62 revised papers presented together with 2 invited talks were carefully reviewed and selected from numerous submissions. The second volume contains 34 revised papers selected from the following workshops: Workshop on color and Reflectance in Imaging and Computer Vision (CRICV 2010); Workshop on Media Retargeting (MRW 2010); Workshop on Reconstruction and Modeling of Large-Scale 3D Virtual Environments (RMLE 2010); and Workshop on Computer Vision on GPUs (CVGPU 2010).




Image Processing, Computer Vision, and Pattern Recognition


Book Description

Proceedings of the 2019 International Conference on Image Processing, Computer Vision, and Pattern Recognition (IPCV'19) held July 29th - August 1st, 2019 in Las Vegas, Nevada.




Computer Vision and Recognition Systems


Book Description

This cutting-edge volume focuses on how artificial intelligence can be used to give computers the ability to imitate human sight. With contributions from researchers in diverse countries, including Thailand, Spain, Japan, Turkey, Australia, and India, the book explains the essential modules that are necessary for comprehending artificial intelligence experiences to provide machines with the power of vision. The volume also presents innovative research developments, applications, and current trends in the field. The chapters cover such topics as visual quality improvement, Parkinson’s disease diagnosis, hypertensive retinopathy detection through retinal fundus, big image data processing, N-grams for image classification, medical brain images, chatbot applications, credit score improvisation, vision-based vehicle lane detection, damaged vehicle parts recognition, partial image encryption of medical images, and image synthesis. The chapter authors show different approaches to computer vision, image processing, and frameworks for machine learning to build automated and stable applications. Deep learning is included for making immersive application-based systems, pattern recognition, and biometric systems. The book also considers efficiency and comparison at various levels of using algorithms for real-time applications, processes, and analysis.




Emerging Topics in Computer Vision and Its Applications


Book Description

This book gives a comprehensive overview of the most advanced theories, methodologies and applications in computer vision. Particularly, it gives an extensive coverage of 3D and robotic vision problems. Example chapters featured are Fourier methods for 3D surface modeling and analysis, use of constraints for calibration-free 3D Euclidean reconstruction, novel photogeometric methods for capturing static and dynamic objects, performance evaluation of robot localization methods in outdoor terrains, integrating 3D vision with force/tactile sensors, tracking via in-floor sensing, self-calibration of camera networks, etc. Some unique applications of computer vision in marine fishery, biomedical issues, driver assistance, are also highlighted.




Kernel Methods in Computer Vision


Book Description

Few developments have influenced the field of computer vision in the last decade more than the introduction of statistical machine learning techniques. Particularly kernel-based classifiers, such as the support vector machine, have become indispensable tools, providing a unified framework for solving a wide range of image-related prediction tasks, including face recognition, object detection and action classification. By emphasizing the geometric intuition that all kernel methods rely on, Kernel Methods in Computer Vision provides an introduction to kernel-based machine learning techniques accessible to a wide audience including students, researchers and practitioners alike, without sacrificing mathematical correctness. It covers not only support vector machines but also less known techniques for kernel-based regression, outlier detection, clustering and dimensionality reduction. Additionally, it offers an outlook on recent developments in kernel methods that have not yet made it into the regular textbooks: structured prediction, dependency estimation and learning of the kernel function. Each topic is illustrated with examples of successful application in the computer vision literature, making Kernel Methods in Computer Vision a useful guide not only for those wanting to understand the working principles of kernel methods, but also for anyone wanting to apply them to real-life problems.




Recent Advances in Computer Vision


Book Description

This book presents a collection of high-quality research by leading experts in computer vision and its applications. Each of the 16 chapters can be read independently and discusses the principles of a specific topic, reviews up-to-date techniques, presents outcomes, and highlights the challenges and future directions. As such the book explores the latest trends in fashion creative processes, facial features detection, visual odometry, transfer learning, face recognition, feature description, plankton and scene classification, video face alignment, video searching, and object segmentation. It is intended for postgraduate students, researchers, scholars and developers who are interested in computer vision and connected research disciplines, and is also suitable for senior undergraduate students who are taking advanced courses in related topics. However, it is also provides a valuable reference resource for practitioners from industry who want to keep abreast of recent developments in this dynamic, exciting and profitable research field.




Computer Vision In Medical Imaging


Book Description

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.




Image Recognition


Book Description

This book focuses on research trends in image processing and recognition and corresponding developments. Among them, the book focuses on recent research, especially in the field of advanced human-computer interaction and intelligent computing. Given the existing interaction and recognition of the station, some novel topics are proposed, including how to establish a cognitive model in human-computer interaction and how to express and transfer human knowledge into human-machine image recognition. In an interactive implementation, how to implement user experience through image recognition during machine interaction.The main contents of this book are arranged as follows. Chapter 1 introduces the research background, research questions, goals, research questions and overviews of this book. Chapter 2 focuses on image calculation methods based on principal component analysis (PCA) and related extensions. Chapter 3 presents an image processing scheme that takes into account the user experience and the optimal balance between QoE and QoS management. Chapter 4 focuses on the performance analysis of methods for classifying image textures based on local binary patterns. Chapter 5 introduces the generation of the anti-network (GAN) and its methods. Chapter 6 mainly discusses the recognition of the interest target as the visual consciousness of the image computing system and proposes a fuzzy target-based interest target differentiation system, which is applied to the extinction enhancement as a display.Chapter 7 focuses on the implementation and application of PCA image processing and its application in computer vision in the fields of image compression, visual tracking, image recognition, and super-resolution image reconstruction. Chapter 8 introduces various applications of feature extraction and classification techniques in seizures. Chapter 9 introduces some typical image processing based on GAN, involving multiple fields. Chapter 10 introduces an agent-based collaborative information processing framework with stereo vision applications. Chapter 11 introduces the MR application system as a synthesis of the methods and algorithms in each of the above chapters and discusses system design and implementation in terms of functions, modules, and workflows. Chapter 12 evaluates the book, draws conclusions, and proposes advances in image recognition and its advances in image recognition, limitations, and future work, and applies them to intelligent HCI in system design. Objects, human knowledge and user experience, QoE-QoS management, system management, and confidentiality and security.




Handbook of Research on Emerging Trends and Applications of Machine Learning


Book Description

As today’s world continues to advance, Artificial Intelligence (AI) is a field that has become a staple of technological development and led to the advancement of numerous professional industries. An application within AI that has gained attention is machine learning. Machine learning uses statistical techniques and algorithms to give computer systems the ability to understand and its popularity has circulated through many trades. Understanding this technology and its countless implementations is pivotal for scientists and researchers across the world. The Handbook of Research on Emerging Trends and Applications of Machine Learning provides a high-level understanding of various machine learning algorithms along with modern tools and techniques using Artificial Intelligence. In addition, this book explores the critical role that machine learning plays in a variety of professional fields including healthcare, business, and computer science. While highlighting topics including image processing, predictive analytics, and smart grid management, this book is ideally designed for developers, data scientists, business analysts, information architects, finance agents, healthcare professionals, researchers, retail traders, professors, and graduate students seeking current research on the benefits, implementations, and trends of machine learning.




Advances in Computer Vision


Book Description

This book presents a remarkable collection of chapters covering a wide range of topics in the areas of Computer Vision, both from theoretical and application perspectives. It gathers the proceedings of the Computer Vision Conference (CVC 2019), held in Las Vegas, USA from May 2 to 3, 2019. The conference attracted a total of 371 submissions from pioneering researchers, scientists, industrial engineers, and students all around the world. These submissions underwent a double-blind peer review process, after which 118 (including 7 poster papers) were selected for inclusion in these proceedings. The book’s goal is to reflect the intellectual breadth and depth of current research on computer vision, from classical to intelligent scope. Accordingly, its respective chapters address state-of-the-art intelligent methods and techniques for solving real-world problems, while also outlining future research directions. Topic areas covered include Machine Vision and Learning, Data Science, Image Processing, Deep Learning, and Computer Vision Applications.