Trends in Organometallic Chemistry Research


Book Description

Organometallic chemistry is based on the reactions and use of a class of compounds (R-M) that contain a covalent bond between carbon and metal. They are prepared either by direct reaction of the metal with an organic compound or by replacement of a metal from another organometallic substance. Research in organometallic chemistry is also conducted in the areas of cluster synthesis, main-group derivatives in unusual oxidation states, organometallic polymers, unstable organometallic compounds and intermediates in matrices, structure determination of organometallic compounds in the solid state [X-ray diffraction] and gaseous states [electron diffraction], and mechanisms of reactions of transient silylenes and related species. In addition to the traditional metals and semimetals, elements such as selenium, lithium and magnesium are considered to form organometallic compounds, e.g. organomagnesium compounds MeMgI, iodo(methyl)magnesium and diethylmagnesium which are Grignard reagents an organo-lithium compound BuLi butyllithium; Organometallic compounds often find practical use as catalysts, the processing of petroleum products and the production of organic polymers.




Synthesis of Organometallic Compounds


Book Description

Inorganic Chemistry: Inorganic Chemistry: A Textbook Series This series reflects the breadth of modern research in inorganic chemistry and fulfils the need for advanced texts. The series covers the whole range of inorganic and physical chemistry, solid state chemistry, coordination chemistry, main group chemistry and bioinorganic chemistry. Synthesis of Organometallic Compounds A Practical Guide Edited by Sanshiro Komiya Tokyo University of Agriculture and Technology, Japan. This book describes the concepts of organometallic chemistry and provides an overview of the chemistry of each metal including the synthesis and handling of its important organometallic compounds. Synthesis of Organometallic Compounds: A Practical Guide provides: an excellent introduction to organometallic synthesis detailed synthetic protocols for the most important organometallic syntheses an overview of the reactivity, applications and versatility of organometallic compounds a survey of metals and their organometallic derivatives The purpose of this book is to serve as a practical guide to understanding the general concepts of organometallics for graduate students and scientists who are not necessarily specialists in organometallic chemistry.




Comprehensive Organometallic Chemistry III


Book Description

Volume 1 reviews the preparations, properties, structure, bonding and applications of organometallic compounds of Alkali metal, Alkaline earth, Copper, Silver, Zinc, Mercury and Cadmium. It provides a clear and comprehensive overview of developments since 1993 and attempts to predict trends in the field over the next ten years. Like its predecessors, COMC (1982) and COMC-II (1995), this new work is the essential reference text for any chemist or technologist who needs to use or apply organometallic compounds. * valuable content available May 2009 as an individual volume * separate volumes will appeal to a wider chemistry and materials science audience * priced for individual researcher as well as library purchase




Trends in Chemistry of Materials


Book Description

In this collection, the author has compiled a set of his papers representing some of the highlights of materials chemistry. It features a section on oxidic materials, which includes high-temperature superconductivity, colossal magnetoresistance, electronic phase separation and multiferroics. The author has also included novel methods for making gallium nitride, boron nitride and such materials, by using precursors and the urea decomposition route. Moreover, there is a section dealing with open-framework and hybrid materials of which the latter has a great future since one can make use of the rigidity of inorganic structures and the functionality and flexibility of the organic residues to design materials with novel properties.




Organometallic Chemistry in Industry


Book Description

Showcases the important role of organometallic chemistry in industrial applications and includes practical examples and case studies This comprehensive book takes a practical approach to how organometallic chemistry is being used in industrial applications. It uniquely offers numerous, real-world examples and case studies that aid working R&D researchers as well as Ph.D. and postdoc students preparing to ace interviews in order to enter the workforce. Edited by two world-leading and established industrial chemists, the book covers flow chemistry (catalytic and non-catalytic organometallic chemistry), various cross-coupling reactions (C-C, C-N, and C-B) in classical batch chemistry, conjugate addition reactions, metathesis, and C-H arylation and achiral hydrogenation reactions. Beginning with an overview of the many industrial milestones within the field over the years, Organometallic Chemistry in Industry: A Practical Approach provides chapters covering: the design, development, and execution of a continuous flow enabled API manufacturing route; continuous manufacturing as an enabling technology for low temperature organometallic chemistry; the development of a nickel-catalyzed enantioselective Mizoroki-Heck coupling; and the development of iron-catalyzed Kumada cross-coupling for the large scale production of Aliskiren intermediates. The book also examines aspects of homogeneous hydrogenation from industrial research; the latest industrial uses of olefin metathesis; and more. -Includes rare industrial case studies difficult to find in current literature -Helps readers successfully carry out their own reactions -Covers topics like flow chemistry, cross-coupling reactions, and dehydrative decarbonylation -Features a foreword by Nobel Laureate R. H. Grubbs -A perfect resource for every R&D researcher in industry -Useful for PhD students and postdocs: excellent preparation for a job interview Organometallic Chemistry in Industry: A Practical Approach is an excellent resource for all chemists, including those working in the pharmaceutical industry and organometallics.




Leading Edge Organometallic Chemistry Research


Book Description

Organometallic chemistry is based on the reactions and use of a class of compounds (R-M) that contain a covalent bond between carbon and metal. They are prepared either by direct reaction of the metal with an organic compound or by replacement of a metal from another organometallic substance. Research in organometallic chemistry is also conducted in the areas of cluster synthesis, main-group derivatives in unusual oxidation states, organometallic polymers, unstable organometallic compounds and intermediates in matrices, structure determination of organometallic compounds in the solid state [X-ray diffraction] and gaseous states [electron diffraction], and mechanisms of reactions of transient silylenes and related species. In addition to the traditional metals and semimetals, elements such as selenium, lithium and magnesium are considered to form organometallic compounds, e.g. organomagnesium compounds MeMgI, iodo(methyl)magnesium and diethylmagnesium which are Grignard reagents an organo-lithium compound BuLi butyllithium; Organometallic compounds often find practical use as catalysts, the processing of petroleum products and the production of organic polymers.




New Developments in Organometallic Chemistry Research


Book Description

Organometallic chemistry is based on the reactions and use of a class of compounds (R-M) that contain a covalent bond between carbon and metal. They are prepared either by direct reaction of the metal with an organic compound or by replacement of a metal from another organometallic substance. Research in organometallic chemistry is also conducted in the areas of cluster synthesis, main-group derivatives in unusual oxidation states, organometallic polymers, unstable organometallic compounds and intermediates in matrices, structure determination of organometallic compounds in the solid state [X-ray diffraction] and gaseous states [electron diffraction], and mechanisms of reactions of transient silylenes and related species. In addition to the traditional metals and semimetals, elements such as selenium, lithium and magnesium are considered to form organometallic compounds, e.g. organomagnesium compounds MeMgI, iodo(methyl)magnesium and diethylmagnesium, which are Grignard reagents an organo-lithium compound BuLi butyllithium; Organometallic compounds often find practical use as catalysts, the processing of petroleum products and the production of organic polymers.




Iron Catalysis


Book Description

Juan I. Padrón and Víctor S. Martín: Catalysis by means of Fe-based Lewis acids; Hiroshi Nakazawa*, Masumi Itazaki: Fe–H Complexes in Catalysis; Kristin Schröder, Kathrin Junge, Bianca Bitterlich, and Matthias Beller: Fe-catalyzed Oxidation Reactions of Olefins, Alkanes and Alcohols: Involvement of Oxo- and Peroxo Complexes; Chi-Ming Che, Cong-Ying Zhou, Ella Lai-Ming Wong: Catalysis by Fe=X Complexes (X=NR, CR2); René Peters, Daniel F. Fischer and Sascha Jautze: Ferrocene and Half Sandwich Complexes as Catalysts with Iron Participation; Markus Jegelka, Bernd Plietker: Catalysis by Means of Complex Ferrates.




Advances in Organometallic Chemistry


Book Description

Advances in Organometallic Chemistry




Current Trends in Organic Synthesis


Book Description

Current Trends in Organic Synthesis is a collection of papers presented at the Fourth International Conference on Organic Synthesis, held in Tokyo, Japan on August 22-27, 1982. This conference brings together the significant achievements in the diversified frontier fields of organic synthesis. This book is composed of 33 chapters. The first chapters focus on the synthesis of biologically active natural compounds, including metabolites of arachidonic acid, erythromycin A, verrucarins, steroids, anthracyclines, terpenes, yeast alanine t-RNA, beta-lactam antibiotics, and palitoxin. Other chapters deal with the central problems in stereoselective and chiral synthesis, as well as processes of high degree of stereochemical control and asymmetric induction. These chapters also describe chiral pool synthesis by means of carbohydrate precursors. This book also examines the methodologies in organic synthesis using reagents with boron, aluminum, transition metals, silicon, phosphorus, and sulfur. The remaining chapters are devoted to reactions involving radical initiated ring closure, small ring hydrogenolysis, annulene synthesis, vicarious nucleophilic substitution of aromatic hydrogen, and dichlorine monoxide mediated powerful chlorination. This book is of value to organic chemists and allied scientists.