Trigonometric Functions And Complex Numbers: In Mathematical Olympiad And Competitions


Book Description

Trigonometric Functions and Complex Numbers covers the followings areas in the International Mathematical Olympiad (IMO) and other mathematical competitions. The contents are essential for the IMO. A good help for students who want to improve in these areas.




Trigonometric Functions and Complex Numbers


Book Description

Trigonometric Functions and Complex Numbers covers the followings areas in the International Mathematical Olympiad (IMO) and other mathematical competitions. The contents are essential for the IMO. A good help for students who want to improve in these areas.




103 Trigonometry Problems


Book Description

* Problem-solving tactics and practical test-taking techniques provide in-depth enrichment and preparation for various math competitions * Comprehensive introduction to trigonometric functions, their relations and functional properties, and their applications in the Euclidean plane and solid geometry * A cogent problem-solving resource for advanced high school students, undergraduates, and mathematics teachers engaged in competition training




Mathematical Olympiad Challenges


Book Description

A collection of problems put together by coaches of the U.S. International Mathematical Olympiad Team.




Complex Numbers from A to ...Z


Book Description

* Learn how complex numbers may be used to solve algebraic equations, as well as their geometric interpretation * Theoretical aspects are augmented with rich exercises and problems at various levels of difficulty * A special feature is a selection of outstanding Olympiad problems solved by employing the methods presented * May serve as an engaging supplemental text for an introductory undergrad course on complex numbers or number theory




The IMO Compendium


Book Description

"The IMO Compendium" is the ultimate collection of challenging high-school-level mathematics problems and is an invaluable resource not only for high-school students preparing for mathematics competitions, but for anyone who loves and appreciates mathematics. The International Mathematical Olympiad (IMO), nearing its 50th anniversary, has become the most popular and prestigious competition for high-school students interested in mathematics. Only six students from each participating country are given the honor of participating in this competition every year. The IMO represents not only a great opportunity to tackle interesting and challenging mathematics problems, it also offers a way for high school students to measure up with students from the rest of the world. Until the first edition of this book appearing in 2006, it has been almost impossible to obtain a complete collection of the problems proposed at the IMO in book form. "The IMO Compendium" is the result of a collaboration between four former IMO participants from Yugoslavia, now Serbia and Montenegro, to rescue these problems from old and scattered manuscripts, and produce the ultimate source of IMO practice problems. This book attempts to gather all the problems and solutions appearing on the IMO through 2009. This second edition contains 143 new problems, picking up where the 1959-2004 edition has left off.




Mathematical Olympiad Treasures


Book Description

Mathematical Olympiad Treasures aims at building a bridge between ordinary high school exercises and more sophisticated, intricate and abstract concepts in undergraduate mathematics. The book contains a stimulating collection of problems in the subjects of algebra, geometry, trigonometry, number theory and combinatorics. While it may be considered a sequel to "Mathematical Olympiad Challenges," the focus is on engaging a wider audience to apply techniques and strategies to real-world problems. Throughout the book students are encouraged to express their ideas, conjectures, and conclusions in writing. The goal is to help readers develop a host of new mathematical tools that will be useful beyond the classroom and in a number of disciplines.




Inequalities


Book Description

This book is intended for the Mathematical Olympiad students who wish to prepare for the study of inequalities, a topic now of frequent use at various levels of mathematical competitions. In this volume we present both classic inequalities and the more useful inequalities for confronting and solving optimization problems. An important part of this book deals with geometric inequalities and this fact makes a big difference with respect to most of the books that deal with this topic in the mathematical olympiad. The book has been organized in four chapters which have each of them a different character. Chapter 1 is dedicated to present basic inequalities. Most of them are numerical inequalities generally lacking any geometric meaning. However, where it is possible to provide a geometric interpretation, we include it as we go along. We emphasize the importance of some of these inequalities, such as the inequality between the arithmetic mean and the geometric mean, the Cauchy-Schwarz inequality, the rearrangementinequality, the Jensen inequality, the Muirhead theorem, among others. For all these, besides giving the proof, we present several examples that show how to use them in mathematical olympiad problems. We also emphasize how the substitution strategy is used to deduce several inequalities.




Problem-Solving Strategies


Book Description

A unique collection of competition problems from over twenty major national and international mathematical competitions for high school students. Written for trainers and participants of contests of all levels up to the highest level, this will appeal to high school teachers conducting a mathematics club who need a range of simple to complex problems and to those instructors wishing to pose a "problem of the week", thus bringing a creative atmosphere into the classrooms. Equally, this is a must-have for individuals interested in solving difficult and challenging problems. Each chapter starts with typical examples illustrating the central concepts and is followed by a number of carefully selected problems and their solutions. Most of the solutions are complete, but some merely point to the road leading to the final solution. In addition to being a valuable resource of mathematical problems and solution strategies, this is the most complete training book on the market.




Putnam and Beyond


Book Description

This book takes the reader on a journey through the world of college mathematics, focusing on some of the most important concepts and results in the theories of polynomials, linear algebra, real analysis, differential equations, coordinate geometry, trigonometry, elementary number theory, combinatorics, and probability. Preliminary material provides an overview of common methods of proof: argument by contradiction, mathematical induction, pigeonhole principle, ordered sets, and invariants. Each chapter systematically presents a single subject within which problems are clustered in each section according to the specific topic. The exposition is driven by nearly 1300 problems and examples chosen from numerous sources from around the world; many original contributions come from the authors. The source, author, and historical background are cited whenever possible. Complete solutions to all problems are given at the end of the book. This second edition includes new sections on quad ratic polynomials, curves in the plane, quadratic fields, combinatorics of numbers, and graph theory, and added problems or theoretical expansion of sections on polynomials, matrices, abstract algebra, limits of sequences and functions, derivatives and their applications, Stokes' theorem, analytical geometry, combinatorial geometry, and counting strategies. Using the W.L. Putnam Mathematical Competition for undergraduates as an inspiring symbol to build an appropriate math background for graduate studies in pure or applied mathematics, the reader is eased into transitioning from problem-solving at the high school level to the university and beyond, that is, to mathematical research. This work may be used as a study guide for the Putnam exam, as a text for many different problem-solving courses, and as a source of problems for standard courses in undergraduate mathematics. Putnam and Beyond is organized for independent study by undergraduate and gradu ate students, as well as teachers and researchers in the physical sciences who wish to expand their mathematical horizons.