The Heterogeneity of Cancer Metabolism


Book Description

Genetic alterations in cancer, in addition to being the fundamental drivers of tumorigenesis, can give rise to a variety of metabolic adaptations that allow cancer cells to survive and proliferate in diverse tumor microenvironments. This metabolic flexibility is different from normal cellular metabolic processes and leads to heterogeneity in cancer metabolism within the same cancer type or even within the same tumor. In this book, we delve into the complexity and diversity of cancer metabolism, and highlight how understanding the heterogeneity of cancer metabolism is fundamental to the development of effective metabolism-based therapeutic strategies. Deciphering how cancer cells utilize various nutrient resources will enable clinicians and researchers to pair specific chemotherapeutic agents with patients who are most likely to respond with positive outcomes, allowing for more cost-effective and personalized cancer therapeutic strategies.




Tumor Microenvironment and Cellular Stress


Book Description

The collection of chapters in this proceeding volume reflects the latest research presented at the Aegean meeting on Tumor Microenvironment and Cellular Stress held in Crete in Fall of 2012. The book provides critical insight to how the tumor microenvironment affects tumor metabolism, cell stemness, cell viability, genomic instability and more. Additional topics include identifying common pathways that are potential candidates for therapeutic intervention, which will stimulate collaboration between groups that are more focused on elucidation of biochemical aspects of stress biology and groups that study the pathophysiological aspects of stress pathways or engaged in drug discovery.




The Link Between Inflammation and Cancer


Book Description

A link between inflammation and cancer has been established many years ago, yet it is only recently that the potential significance of this connection has become apparent. Although several examples of chronic inflammatory conditions, often induced by persistent irritation and/or infection, developing into cancer have been known for some time, there has been a notable resistance to contemplate the possibility that this association may apply in a causative way to other cancers. Examples for such progression from chronic inflammation to cancer are colon carcinoma developing with increased frequency in patients with ulcerative colitis, and the increased incidence of bladder cancer in patients suffering from chronic Schistosoma infection. Inflammation and cancer have been recognized to be linked in another context for many years, i.e., with regards to pathologies resembling chronic lacerations or 'wounds that do not heal.' More recently, the immunology of wound healing has given us clues as to the mechanistic link between inflammation and cancer, in as much as wounds and chronic inflammation turn off local cell-mediated immune responses and switch on growth factor release as well the growth of new blood vessels - angiogenesis. Both of these are features of most types of tumours, which suggest that tumours may require an immunologically shielded milieu and a growth factor-rich environment.




Autophagy in tumor and tumor microenvironment


Book Description

This book deals with the paradoxical role of autophagy in tumor suppression and tumor promotion in cancer cells. Autophagy plays opposing, context-dependent roles in tumors; accordingly, strategies based on inhibiting or stimulating autophagy could offer as potential cancer therapies. The book elucidates the physiological role of autophagy in modulating cancer metastasis, which is the primary cause of cancer-associated mortality. Further, it reviews its role in the differentiation, development, and activation of multiple immune cells, and its potential applications in tumor immunotherapy. In addition, it examines the effect of epigenetic modifications of autophagy-associated genes in regulating tumor growth and therapeutic response and summarizes autophagy’s role in the development of resistance to a variety of anti-cancer drugs in cancer cells. In closing, it assesses autophagy as a potential therapeutic target for cancer treatment. Given its scope, the book offers a valuable asset for all oncologists and researchers who wish to understand the potential role of autophagy in tumor biology.




Cooperation of Liver Cells in Health and Disease


Book Description

It is only during the last decade that the functions of sinusoidal endothelial cells, Kupffer cells, hepatic stellate cells, pit cells and other intrahepatic lymphocytes have been better understood. The development of methods for isolation and co-culturing various types of liver cells has established that they communicate and cooperate via secretion of various intercellular mediators. This monograph summarizes multiple data that suggest the important role of cellular cross-talk for the functions of both normal and diseased liver. Special features of the book include concise presentation of the majority of detailed data in 19 tables. Original schemes allow for the clear illustration of complicated intercellular relationships. This is the first ever presentation of the newly emerging field of liver biology, which is important for hepatic function in health and disease and opens new avenues for therapeutic interventions.




Autophagy and Cancer


Book Description

With the explosion of information on autophagy in cancer, this is an opportune time to speed the efforts to translate our current knowledge about autophagy regulation into better understanding of its role in cancer. This book will cover the latest advances in this area from the basics, such as the molecular machinery for autophagy induction and regulation, up to the current areas of interest such as modulation of autophagy and drug discovery for cancer prevention and treatment. The text will include an explanation on how autophagy can function in both oncogenesis and tumor suppression and a description of its function in tumor development and tumor suppression through its roles in cell survival, cell death, cell growth as well as its influences on inflammation, immunity, DNA damage, oxidative stress, tumor microenvironment, etc. The remaining chapters will cover topics on autophagy and cancer therapy. These pages will serve as a description on how the pro-survival function of autophagy may help cancer cells resist chemotherapy and radiation treatment as well as how the pro-death functions of autophagy may enhance cell death in response to cancer therapy, and how to target autophagy for cancer prevention and therapy − what to target and how to target it. ​




Inflammation and Cancer


Book Description

This volume examines in detail the role of chronic inflammatory processes in the development of several types of cancer. Leading experts describe the latest results of molecular and cellular research on infection, cancer-related inflammation and tumorigenesis. Further, the clinical significance of these findings in preventing cancer progression and approaches to treating the diseases are discussed. Individual chapters cover cancer of the lung, colon, breast, brain, head and neck, pancreas, prostate, bladder, kidney, liver, cervix and skin as well as gastric cancer, sarcoma, lymphoma, leukemia and multiple myeloma.




Biomechanics in Oncology


Book Description

This book covers multi-scale biomechanics for oncology, ranging from cells and tissues to whole organ. Topics covered include, but not limited to, biomaterials in mechano-oncology, non-invasive imaging techniques, mechanical models of cell migration, cancer cell mechanics, and platelet-based drug delivery for cancer applications. This is an ideal book for graduate students, biomedical engineers, and researchers in the field of mechanobiology and oncology. This book also: Describes how mechanical properties of cancer cells, the extracellular matrix, tumor microenvironment and immuno-editing, and fluid flow dynamics contribute to tumor progression and the metastatic process Provides the latest research on non-invasive imaging, including traction force microscopy and brillouin confocal microscopy Includes insight into NCIs’ role in supporting biomechanics in oncology research Details how biomaterials in mechano-oncology can be used as a means to tune materials to study cancer




Minimal Residual Disease and Circulating Tumor Cells in Breast Cancer


Book Description

This important book provides up-to-date information on a series of topical issues relating to the approach to minimal residual disease in breast cancer patients. It first explains how the study of minimal residual disease and circulating and disseminated tumor cells (CTCs/DTCs) can assist in the understanding of breast cancer metastasis. A series of chapters then discuss the various technologies available for the detection and characterization of CTCs and DTCs, pinpointing their merits and limitations. Detailed consideration is given to the relevance of CTCs and DTCs, and their detection, to clinical research and practice. The role of other blood-based biomarkers is also addressed, and the closing chapters debate the challenges facing drug and biomarker co-development and the use of CTCs for companion diagnostic development. This book will be of interest and assistance to all who are engaged in the modern management of breast cancer.




Cancer Patient Survival


Book Description