Random Vibration and Statistical Linearization


Book Description

This self-contained volume explains the general method of statistical linearization and its use in solving random vibration problems. Numerous examples show advanced undergraduate and graduate students many practical applications. 1990 edition.




Advances in Rotor Dynamics, Control, and Structural Health Monitoring


Book Description

This book consists of selected and peer-reviewed papers presented at the 13th International Conference on Vibration Problems (ICOVP 2017). The topics covered in this book are broadly related to the fields of structural health monitoring, vibration control and rotor dynamics. In the structural health monitoring section studies on nonlinear dynamic analysis, damage identification, viscoelastic model of concrete, and seismic damage assessment are thoroughly discussed with analytical and numerical techniques. The vibration control part includes topics such as multi-storeyed stacked tuned mass dampers, vibration isolation with elastomeric mounts, and nonlinear active vibration absorber. This book will be useful for beginners, researchers and professionals interested in the field of vibration control, structural health monitoring and rotor dynamics.




Damping Technologies for Tall Buildings


Book Description

Damping Technologies for Tall Buildings provides practical advice on the selection, design, installation and testing of damping systems. Richly illustrated with images and schematics, this book presents expert commentary on different damping systems, giving readers a way to accurately compare between different device categories and gain and understand the advantages and disadvantages of each. In addition, the book covers their economical and sustainability implications. Case studies are included to provide a direct understanding on the possible applications of each device category. - Provides an expert guide on the selection and deployment of the various types of damping technologies - Drawn from extensive contributions from international experts and research projects that represent the current state-of-the-art and design in damping technologies - Includes 25+ real case studies collected with very detailed information on damping design, installation, testing and other building implications




Optimization of Tuned Mass Dampers


Book Description

This book is a timely book to summarize the latest developments in the optimization of tuned mass dampers covering all classical approaches and new trends including metaheuristic algorithms. Also, artificial intelligence and machine learning methods are included to predict optimum results by skipping long optimization processes. Another difference and advantage of the book are to provide chapters about several types of control types including passive tuned mass dampers, active tuned mass dampers, tuned liquid dampers, tuned liquid column dampers and inerter dampers. Tuned mass dampers (TMDs) are vibration absorber devices used in all types of mechanic systems. The key factor in the design is an effective tuning of TMDs for the desired performance. In practice, several high-rise structures and bridges were designed by including TMDs. Also, TMDs were installed after the construction of the structures after several negative experiences resulting from the disturbing sway of the structures. In optimum design, several closed-form expressions have been proposed for optimum frequency and damping ratio of TMDs, but the exact optimization requires iterative optimization approaches. The current trend is to use evolutionary algorithms and metaheuristic optimization methods to reach the goal.




Structural Motion Engineering


Book Description

This innovative volume provides a systematic treatment of the basic concepts and computational procedures for structural motion design and engineering for civil installations. The authors illustrate the application of motion control to a wide spectrum of buildings through many examples. Topics covered include optimal stiffness distributions for building-type structures, the role of damping in controlling motion, tuned mass dampers, base isolation systems, linear control, and nonlinear control. The book's primary objective the satisfaction of motion-related design requirements such as restrictions on displacement and acceleration and seeks the optimal deployment of material stiffness and motion control devices to achieve these design targets as well as satisfy constraints on strength. The book is ideal for practicing engineers and graduate students.




CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure


Book Description

This book highlights the key role of green infrastructure (GI) in providing natural and ecosystem solutions, helping alleviate many of the environmental, social, and economic problems caused by rapid urbanization. The book gathers the emerging technologies and applications in various disciplines involving geotechnics, civil engineering, and structures, which are presented in numerous high-quality papers by worldwide researchers, practitioners, policymakers, and entrepreneurs at the 6th CIGOS event, 2021. Moreover, by sharing knowledge and experiences around emerging GI technologies and policy issues, the book aims at encouraging adoption of GI technologies as well as building capacity for implementing GI practices at all scales. This book is useful for researchers and professionals in designing, building, and managing sustainable buildings and infrastructure.




Random Vibration in Mechanical Systems


Book Description

Random Vibration in Mechanical Systems focuses on the fundamental facts and theories of random vibration in a form particularly applicable to mechanical engineers. The book first offers information on the characterization and transmission of random vibration. Discussions focus on the normal or Gaussian random process; excitation-response relations for stationary random processes; response of a single-degree-of-freedom system to stationary random excitation; wide-band and narrow-band random processes; and frequency decomposition of stationary random processes. The text then examines failure due to random vibration, including failure due to first excursion up to a certain level; fatigue failure due to a stationary narrow-band random stress process; failure due to an accumulation of damage; failure due to response remaining above a certain level for too great a fraction of the time; and failure mechanisms. The manuscript is a vital reference for mechanical engineers and researchers interested in random vibration in mechanical systems.




Wind Effects on Structures


Book Description

Provides structural engineers with the knowledge and practical tools needed to perform structural designs for wind that incorporate major technological, conceptual, analytical and computational advances achieved in the last two decades. With clear explanations and documentation of the concepts, methods, algorithms, and software available for accounting for wind loads in structural design, it also describes the wind engineer's contributions in sufficient detail that they can be effectively scrutinized by the structural engineer in charge of the design. Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is organized in four sections. The first covers atmospheric flows, extreme wind speeds, and bluff body aerodynamics. The second examines the design of buildings, and includes chapters on aerodynamic loads; dynamic and effective wind-induced loads; wind effects with specified MRIs; low-rise buildings; tall buildings; and more. The third part is devoted to aeroelastic effects, and covers both fundamentals and applications. The last part considers other structures and special topics such as trussed frameworks; offshore structures; and tornado effects. Offering readers the knowledge and practical tools needed to develop structural designs for wind loadings, this book: Points out significant limitations in the design of buildings based on such techniques as the high-frequency force balance Discusses powerful algorithms, tools, and software needed for the effective design for wind, and provides numerous examples of application Discusses techniques applicable to structures other than buildings, including stacks and suspended-span bridges Features several appendices on Elements of Probability and Statistics; Peaks-over-Threshold Poisson-Process Procedure for Estimating Peaks; estimates of the WTC Towers’ Response to Wind and their shortcomings; and more Wind Effects on Structures: Modern Structural Design for Wind, 4th Edition is an excellent text for structural engineers, wind engineers, and structural engineering students and faculty.




Vibration Problems in Structures


Book Description

Authors: Hugo Bachmann, Walter J. Ammann, Florian Deischl, Josef Eisenmann, Ingomar Floegl, Gerhard H. Hirsch, Günter K. Klein, Göran J. Lande, Oskar Mahrenholtz, Hans G. Natke, Hans Nussbaumer, Anthony J. Pretlove, Johann H. Rainer, Ernst-Ulrich Saemann, Lorenz Steinbeisser. Large structures such as factories, gymnasia, concert halls, bridges, towers, masts and chimneys can be detrimentally affected by vibrations. These vibrations can cause either serviceability problems, severely hampering the user's comfort, or safety problems. The aim of this book is to provide structural and civil engineers working in construction and environmental engineering with practical guidelines for counteracting vibration problems. Dynamic actions are considered from the following sources of vibration: - human body motions, - rotating, oscillating and impacting machines, - wind flow, - road traffic, railway traffic and construction work. The main section of the book presents tools that aid in decision-making and in deriving simple solutions to cases of frequently occurring "normal" vibration problems. Complexer problems and more advanced solutions are also considered. In all cases these guidelines should enable the engineer to decide on appropriate solutions expeditiously. The appendices of the book contain fundamentals essential to the main chapters.




Computational Intelligence


Book Description

Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing presents an introduction to some of the cutting edge technological paradigms under the umbrella of computational intelligence. Computational intelligence schemes are investigated with the development of a suitable framework for fuzzy logic, neural networks and evolutionary computing, neuro-fuzzy systems, evolutionary-fuzzy systems and evolutionary neural systems. Applications to linear and non-linear systems are discussed with examples. Key features: Covers all the aspects of fuzzy, neural and evolutionary approaches with worked out examples, MATLAB® exercises and applications in each chapter Presents the synergies of technologies of computational intelligence such as evolutionary fuzzy neural fuzzy and evolutionary neural systems Considers real world problems in the domain of systems modelling, control and optimization Contains a foreword written by Lotfi Zadeh Computational Intelligence: Synergies of Fuzzy Logic, Neural Networks and Evolutionary Computing is an ideal text for final year undergraduate, postgraduate and research students in electrical, control, computer, industrial and manufacturing engineering.