Tuning, Timbre, Spectrum, Scale


Book Description

Tuning, Timbre, Spectrum, Scale focuses on perceptions of consonance and dissonance, and how these are dependent on timbre. This also relates to musical scale: certain timbres sound more consonant in some scales than others. Sensory consonance and the ability to measure it have important implications for the design of audio devices and for musical theory and analysis. Applications include methods of adapting sounds for arbitrary scales, ways to specify scales for nonharmonic sounds, and techniques of sound manipulation based on maximizing (or minimizing) consonance. Special consideration is given here to a new method of adaptive tuning that can automatically adjust the tuning of a piece based its timbral character so as to minimize dissonance. Audio examples illustrating the ideas presented are provided on an accompanying CD. This unique analysis of sound and scale will be of interest to physicists and engineers working in acoustics, as well as to musicians and psychologists.




Tuning, Timbre, Spectrum, Scale


Book Description

Table2. 2. Each note consists of three partials. If the sequence is played ascending, then the ?rst virtual pitch tends to be perceived, whereas if played descending, the second, lower virtual pitch tends to be heard. Only one virtual pitch is audible at a time. This can be heard in sound examples [S: 6] and [S: 7]. Note First Second Third Virtual Pitch Virtual Pitch partial partial partial ascending descending 1 600 800 1000 200. 0 158. 9 2 620 820 1020 205. 2 163. 0 3 640 840 1040 210. 4 167. 1 4 660 860 1060 215. 6 171. 2 5 680 880 1080 220. 9 175. 3 6 700 900 1100 226. 1 179. 4 7 720 920 1120 231. 3 183. 6 8 740 940 1140 236. 6 187. 7 9 760 960 1160 241. 8 191. 8 10 780 980 1180 247. 0 195. 9 11 800 1000 1200 252. 2 200. 0 Pitch and virtual pitch are properties of a single sound. For instance, a chord played by the violin, viola, and cello of a string quartet is not usually thoughtofashavingapitch;rather,pitchisassociatedwitheachinstrumental tone separately. Thus, determining the pitch or pitches of a complex sound source requires that it ?rst be partitioned into separate perceptual entities. Only when a cluster of partials fuse into a single sound can it be assigned a pitch. When listening analytically, for instance, there may be more “notes” presentthaninthesamesoundwhenlisteningholistically.




Tuning, Timbre, Spectrum, Scale


Book Description

Tuning, Timbre, Spectrum, Scale focuses on perceptions ofconsonance and dissonance, and how these are dependent on timbre. This alsorelates to musical scale: certain timbres sound more consonant in some scalesthan others. Sensory consonance and the ability to measure it have importantimplications for the design of audio devices and for musical theory andanalysis. Applications include methods of adapting sounds for arbitrary scales,ways to specify scales for nonharmonic sounds, and techniques of soundmanipulation based on maximizing (or minimizing) consonance. Specialconsideration is given here to a new method of adaptive tuning that canautomatically adjust the tuning of a piece based its timbral character so as tominimize dissonance. Audio examples illustrating the ideas presented areprovided for free on the Springer Extras website (http://extras.springer.com). Thisunique analysis of sound and scale will be of interest to physicists andengineers working in acoustics, as well as to musicians and psychologists




Rhythm and Transforms


Book Description

Rhythm and Transforms is a book that explores rhythm in music, its structure and how we perceive it. The book will be bought by engineers interested in acoustic signal processing as well as musicians, composers and computer scientists. Anyone interested in the scientific basis of music from psychologists to the designers of electronic musical instruments will be interested in this book.




Psychology of Music


Book Description

Approx.542 pages




Think DSP


Book Description

If you understand basic mathematics and know how to program with Python, you’re ready to dive into signal processing. While most resources start with theory to teach this complex subject, this practical book introduces techniques by showing you how they’re applied in the real world. In the first chapter alone, you’ll be able to decompose a sound into its harmonics, modify the harmonics, and generate new sounds. Author Allen Downey explains techniques such as spectral decomposition, filtering, convolution, and the Fast Fourier Transform. This book also provides exercises and code examples to help you understand the material. You’ll explore: Periodic signals and their spectrums Harmonic structure of simple waveforms Chirps and other sounds whose spectrum changes over time Noise signals and natural sources of noise The autocorrelation function for estimating pitch The discrete cosine transform (DCT) for compression The Fast Fourier Transform for spectral analysis Relating operations in time to filters in the frequency domain Linear time-invariant (LTI) system theory Amplitude modulation (AM) used in radio Other books in this series include Think Stats and Think Bayes, also by Allen Downey.







The Contemporary Guitar


Book Description




Music: A Mathematical Offering


Book Description

This book explores the interaction between music and mathematics including harmony, symmetry, digital music and perception of sound.




Music and Memory


Book Description

Divided into two parts, this book shows how human memory influences the organization of music. The first part presents ideas about memory and perception from cognitive psychology and the second part of the book shows how these concepts are exemplified in music.