Deep-water Sedimentation in the Alpine Basin of SE France


Book Description

A September 2001 meeting held in Nice, France, examined current knowledge on confined turbidite systems, in particular the Gr s d'Annot. Work from the meeting covers aspects such as structural geology, sedimentary geology and sequence stratigraphy, modeling of sedimentary processes and architectures, geochemistry, reservoir characterization, seismi




Confined Turbidite Systems


Book Description

This publication reflects a growing appreciation of the extent to which turbidite depositional system development is fundamentally affected by basin-floor topography. In the many turbidite and turbidite hydrocarbon reservoirs, depositional patterns have been moderately to strongly confined by pre-existing slopes. This volume examines aspects of sediment dispersal and accumulation in deep-water systems where sea-floor topography has exerted a decisive control on deposition, and explores the associated controls on hydrocarbon reservoir architecture and heterogeneity.







Mass Transport, Gravity Flows, and Bottom Currents


Book Description

Mass Transport, Gravity Flows, and Bottom Currents: Downslope and Alongslope Processes and Deposits focuses solely on important downslope and alongslope processes. The book provides clear definitions and characteristics based on soil mechanics, fluid mechanics and sediment concentration by volume. It addresses Slides, Slumps, and Debris Flows, Grain Flows, Liquefied/Fluidized Flows, and Turbidity Currents, Density plumes, Hyperpycnal Flows, the Triggering Mechanisms of Downslope Processes, Bottom Currents, and Soft-Sediment Deformation Structures. The mechanics of each process are described in detail and used to provide empirically-driven categories to help recognize these deposits it the rock record. Case studies clearly illustrate of the problems inherent in recognizing these processes in the rock record, and potential solutions are provided alongside future avenues of research. An appendix also provides step-by-step guidance in describing and interpreting sediments. - Comprehensively addresses modern downslope and alongslope processes, including definitions and mechanisms - Provides key criteria for the recognition of depositional facies in the rock record - Includes case studies to illustrate each downslope and alongslope process - Identifies key problems and potential solutions for future research - Uses pragmatic, empirical, data-driven interpretations to revise conventional facies models







Reservoir Model Design


Book Description

This book gives practical advice and ready to use tips on the design and construction of subsurface reservoir models. The design elements cover rock architecture, petrophysical property modelling, multi-scale data integration, upscaling and uncertainty analysis. Philip Ringrose and Mark Bentley share their experience, gained from over a hundred reservoir modelling studies in 25 countries covering clastic, carbonate and fractured reservoir types, and for a range of fluid systems – oil, gas and CO2, production and injection, and effects of different mobility ratios. The intimate relationship between geology and fluid flow is explored throughout, showing how the impact of fluid type, displacement mechanism and the subtleties of single- and multi-phase flow combine to influence reservoir model design. The second edition updates the existing sections and adds sections on the following topics: · A new chapter on modelling for CO2 storage · A new chapter on modelling workflows · An extended chapter on fractured reservoir modelling · An extended chapter on multi-scale modelling · An extended chapter on the quantification of uncertainty · A revised section on the future of modelling based on recently published papers by the authors The main audience for this book is the community of applied geoscientists and engineers involved in understanding fluid flow in the subsurface: whether for the extraction of oil or gas or the injection of CO2 or the subsurface storage of energy in general. We will always need to understand how fluids move in the subsurface and we will always require skills to model these quantitatively. The second edition of this reference book therefore aims to highlight the modelling skills developed for the current energy industry which will also be required for the energy transition of the future. The book is aimed at technical-professional practitioners in the energy industry and is also suitable for a range of Master’s level courses in reservoir characterisation, modelling and engineering. • Provides practical advice and guidelines for users of 3D reservoir modelling packages • Gives advice on reservoir model design for the growing world-wide activity in subsurface reservoir modelling • Covers rock modelling, property modelling, upscaling, fluid flow and uncertainty handling • Encompasses clastic, carbonate and fractured reservoirs • Applies to multi-fluid cases and applications: hydrocarbons and CO2, production and storage; rewritten for use in the Energy Transition.




Deep Marine Systems


Book Description

Deep-water (below wave base) processes, although generallyhidden from view, shape the sedimentary record of more than 65% ofthe Earth’s surface, including large parts of ancientmountain belts. This book aims to inform advanced-levelundergraduate and postgraduate students, and professional Earthscientists with interests in physical oceanography and hydrocarbonexploration and production, about many of the important physicalaspects of deep-water (mainly deep-marine) systems. The authorsconsider transport and deposition in the deep sea, trace-fossilassemblages, and facies stacking patterns as an archive of theunderlying controls on deposit architecture (e.g., seismicity,climate change, autocyclicity). Topics include modern and ancientdeep-water sedimentary environments, tectonic settings, and howbasinal and extra-basinal processes generate the typicalcharacteristics of basin slopes, submarine canyons, contouritemounds and drifts, submarine fans, basin floors and abyssalplains.




New Perspectives on Deep-water Sandstones


Book Description

This handbook is vital for understanding the origin of deep-water sandstones, emphasizing sandy-mass transport deposits (SMTDs) and bottom-current reworked sands (BCRSs) in petroleum reservoirs. This cutting-edge perspective, a pragmatic alternative to the conventional turbidite concepts, is crucial because the turbidite paradigm is built on a dubious foundation without empirical data on sandy turbidity currents in modern oceans. In the absence of evidence for sandy turbidity currents in natural environments, elegant theoretical models and experimental observations of turbidity currents are irrelevant substitutes for explaining the origin of sandy deposits as "turbidites." In documenting modern and ancient SMTDs (sandy slides, sandy slumps, and sandy debrites) and BCRSs (deposits of thermohaline [contour] currents, wind-driven currents, and tidal currents), the author describes and interprets core and outcrop (1:20 to 1:50 scale) from 35 case studies worldwide (which include 32 petroleum reservoirs), totaling more than 10,000 m in cumulative thickness, carried out during the past 36 years (1974-2010). The book dispels myths about the importance of sea level lowstand and provides much-needed clarity on the triggering of sediment failures by earthquakes, meteorite impacts, tsunamis, and cyclones with implications for the distribution of deep-water sandstone petroleum reservoirs. Promotes pragmatic interpretation of deep-water sands using alternative possibilities Validates the economic importance of SMTDs and BCRS in deep-water exploration and production Rich in empirical data and timely new perspectives




Deepwater Sedimentary Systems


Book Description

Deepwater Sedimentary Systems: Science, Discovery and Applications helps readers identify, understand and interpret deepwater sedimentary systems at various scales – both onshore and offshore. This book describes the best practices in the integration of geology, geophysics, engineering, technology and economics used to inform smart business decisions in these diverse environments. It draws on technical results gained from deepwater exploration and production drilling campaigns and global field analog studies. With the multi-decadal resilience of deepwater exploration and production and the nature of its inherent uncertainty, this book serves as the essential reference for companies, consultancies, universities, governments and deepwater practitioners around the world seeking to understand deepwater systems and how to explore for and produce resources in these frontier environments. From an academic perspective, readers will use this book as the primer for understanding the processes, deposits and sedimentary environments in deep water – from deep oceans to deep lakes. This book provides conceptual approaches and state-of-the-art information on deepwater systems, as well as scenarios for the next 100 years of human-led exploration and development in deepwater, offshore environments. The students taught this material in today's classrooms will become the leaders of tomorrow in Earth's deepwater frontier. This book provides a broad foundation in deepwater sedimentary systems. What may take an individual dozens of academic and professional courses to achieve an understanding in these systems is provided here in one book. - Presents a holistic view of how subsurface and engineering processes work together in the energy industry, bringing together contributions from the various technical and engineering disciplines - Provides diverse perspectives from a global authorship to create an accurate picture of the process of deepwater exploration and production around the world - Helps readers understand how to interpret deepwater systems at various scales to inform smart business decisions, with a significant portion of the workflows derived from the upstream energy industry