Turbomachinery International


Book Description

Vols. for 1977- include a section: Turbomachinery world news, called v. 1-




Turbomachinery


Book Description

This book presents a selection of preliminary sizing procedures for turbomachinery. Applicable to both conventional and non-conventional fluids, these procedures enable users to optimize the kinematics, thermodynamics and geometry of the turbomachinery (in the preliminary design phase) using geometric correlations and losses models; to accurately predict the efficiency of turbomachinery – in most cases, in excellent agreement with CFD calculations; and to consistently analyze all turbomachines (axial and radial turbines, axial and centrifugal compressors, centrifugal pumps). The book is intended for bachelor's and master's students in industrial, mechanical and energy engineering, as well as researchers and professionals in the energy systems and turbomachinery sectors, guiding them step by step through the first sizing of turbomachines and the verification of the technological feasibility of turbomachines designed for new conversion systems operating with unconventional fluids.




GAs Turbine Catalog


Book Description










Turbomachinery


Book Description

Turbomachinery presents the theory and design of turbomachines with step-by-step procedures and worked-out examples. This comprehensive reference emphasizes fundamental principles and construction guidelines for enclosed rotators and contains end-of-chapter problem and solution sets, design formulations, and equations for clear understanding of key aspects in machining function, selection, assembly, and construction. Offering a wide range of illustrative examples, the book evaluates the components of incompressible and compressible fluid flow machines and analyzes the kinematics and dynamics of turbomachines with valuable definitions, diagrams, and dimensionless parameters.










Fluid Dynamics and Heat Transfer of Turbomachinery


Book Description

Over the past three decades, information in the aerospace and mechanical engineering fields in general and turbomachinery in particular has grown at an exponential rate. Fluid Dynamics and Heat Transfer of Turbomachinery is the first book, in one complete volume, to bring together the modern approaches and advances in the field, providing the most up-to-date, unified treatment available on basic principles, physical aspects of the aerothermal field, analysis, performance, theory, and computation of turbomachinery flow and heat transfer. Presenting a unified approach to turbomachinery fluid dynamics and aerothermodynamics, the book concentrates on the fluid dynamic aspects of flows and thermodynamic considerations rather than on those related to materials, structure, or mechanical aspects. It covers the latest material and all types of turbomachinery used in modern-day aircraft, automotive, marine, spacecraft, power, and industrial applications; and there is an entire chapter devoted to modern approaches on computation of turbomachinery flow. An additional chapter on turbine cooling and heat transfer is unique for a turbomachinery book. The author has undertaken a systematic approach, through more than three hundred illustrations, in developing the knowledge base. He uses analysis and data correlation in his discussion of most recent developments in this area, drawn from over nine hundred references and from research projects carried out by various organizations in the United States and abroad. This book is extremely useful for anyone involved in the analysis, design, and testing of turbomachinery. For students, it can be used as a two-semester course of senior undergraduate or graduate study: the first semester dealing with the basic principles and analysis of turbomachinery, the second exploring three-dimensional viscid flows, computation, and heat transfer. Many sections are quite general and applicable to other areas in fluid dynamics and heat transfer. The book can also be used as a self-study guide to those who want to acquire this knowledge. The ordered, meticulous, and unified approach of Fluid Dynamics and Heat Transfer of Turbomachinery should make the specialization of turbomachinery in aerospace and mechanical engineering much more accessible to students and professionals alike, in universities, industry, and government. Turbomachinery theory, performance, and analysis made accessible with a new, unified approach For the first time in nearly three decades, here is a completely up-to-date and unified approach to turbomachinery fluid dynamics and aerothermodynamics. Combining the latest advances, methods, and approaches in the field, Fluid Dynamics and Heat Transfer of Turbomachinery features: The most comprehensive and complete coverage of the fluid dynamics and aerothermodynamics of turbomachinery to date A spotlight on the fluid dynamic aspects of flows and the thermodynamic considerations for turbomachinery (rather than the structural or material aspects) A detailed, step-by-step presentation of the analytical and computational models involved, which allows the reader to easily construct a flowchart from which to operate Critical reviews of all the existing analytical and numerical models, highlighting the advantages and drawbacks of each Comprehensive coverage of turbine cooling and heat transfer, a unique feature for a book on turbomachinery An appendix of basic computation techniques, numerous tables, and listings of common terminology, abbreviations, and nomenclature Broad in scope, yet concise, and drawing on the author's teaching experience and research projects for government and industry, Fluid Dynamics and Heat Transfer of Turbomachinery explains and simplifies an increasingly complex field. It is an invaluable resource for undergraduate and graduate students in aerospace and mechanical engineering specializing in turbomachinery, for research and design engineers, and for all professionals who are—or wish to be—at the cutting edge of this technology.