Combustion Phenomena


Book Description

Extensively using experimental and numerical illustrations, CombustionPhenomena: Selected Mechanisms of Flame Formation, Propagation, and Extinction provides a comprehensive survey of the fundamental processes of flame formation, propagation, and extinction. Taking you through the stages of combustion, leading experts visually display, mathematically explain, and clearly theorize on important physical topics of combustion. After a historical introduction to the field, they discuss combustion chemistry, flammability limits, and spark ignition. They also study counterflow twin-flame configuration, flame in a vortex core, the propagation characteristics of edge flames, instabilities, and tulip flames. In addition, the book describes flame extinction in narrow channels, global quenching of premixed flames by turbulence, counterflow premixed flame extinction limits, the interaction of flames with fluids in rotating vessels, and turbulent flames. The final chapter explores diffusion flames as well as combustion in spark- and compression-ignition engines. It also examines the transition from deflagration to detonation, along with the detonation wave structure. With downloadable resources of images that beautifully illustrate a range of combustion phenomena, this book facilitates a practical understanding of the processes occurring in the conception, spread, and extinguishment of a flame. It will help you on your way to finding solutions to real issues encountered in transportation, power generation, industrial processes, chemical engineering, and fire and explosion hazards.







Fuel Economy


Book Description

Concern about the reduced availability and the increased cost of petroleum fuels prompted great efforts in recent years to reduce the fuel consumption of auto mobiles. The ongoing efforts to reduce fuel consumption have addressed many relevant factors, including increased engine performance, reduced friction, use of lightweight materials, and reduced aerodynamic drag. The results of the investigations assessing the various factors affecting fuel economy have been published in journals, conference proceedings, and in company and government reports. This proliferation of technical information makes it difficult for workers to keep abreast of aU developments. The material presented in this book brings together in a single volume much of the relevant materials, summarizes many of the state-of-the-art theories and data, and provides extensive lists of references. Thus, it is hoped that this book will be a useful reference for specialists and practicing engineers interested in the fuel economy of automobiles. J. C. HILLIARD o. S. SPRINGER vii CONTENTS 1. AUTOMOTIVE FUEL ECONOMY David Cole I. Introduction and Background. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . . . . . . . . . n. Fuel Economy Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 A. Engine................................................... 11 B. Drive Train. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 . . . . . . . . . . . . . . C. Vehicle Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 . . . . . . . . . . . . . D. Operating Factors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 . . . . . . . . . . . . E. Test Cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 . . . . . . . . . . . . . . References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 . . . . . . . . . . . . . . . . . 2. FUEL ECONOMY AND EMISSIONS J. T. Kummer I. Introduction .................................................. . 35 n. Emission Regulations .......................................... .







Unsteady Combustor Physics


Book Description

Developing clean, sustainable energy systems is a pre-eminent issue of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage. Unsteady combustor issues present the key challenge associated with the development of clean, high-efficiency combustion systems such as those used for power generation, heating or propulsion applications. This comprehensive study is unique, treating the subject in a systematic manner. Although this book focuses on unsteady combusting flows, it places particular emphasis on the system dynamics that occur at the intersection of the combustion, fluid mechanics and acoustic disciplines. Individuals with a background in fluid mechanics and combustion will find this book to be an incomparable study that synthesises these fields into a coherent understanding of the intrinsically unsteady processes in combustors.







Turbulent Combustion


Book Description

The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.




High Voltage Engineering


Book Description

This book is based on the leading German reference book on high voltage engineering. It includes innovative insulation concepts, new physical knowledge and new insulating materials, emerging techniques for testing, measuring and diagnosis, as well as new fields of application, such as high voltage direct current (HVDC) transmission. It provides an excellent access to high voltage engineering – for engineers, experts and scientists, as well as for students. High voltage engineering is not only a key technology for a safe, economic and sustainable electricity supply, which has become one of the most important challenges for modern society. Furthermore, a broad spectrum of industrial applications of high voltage technologies is used in most of the innovative fields of engineering and science. The book comprehensively covers the contents ranging from electrical field stresses and dielectric strengths through dielectrics, materials and technologies to typical insulation systems for AC, DC and impulse stresses. Thereby, the book provides a unique and successful combination of scientific foundations, modern technologies and practical applications, and it is clearly illustrated by many figures, examples and exercises. Therefore, it is an essential tool both for teaching at universities and for the users of high voltage technologies.




A Preliminary Study of Flame Propagation in a Spark-ignition Engine


Book Description

The N.A.C.A. combustion apparatus was altered to operate as a fuel-injection, spark-ignition engine, and a preliminary study was made of the combustion of gasoline-air mixtures at various air-fuel ratios. Air-fuel ratios ranging from 10 to 21.6 were investigated. Records from an optical indicator and films from a high-speed motion-picture camera were the chief sources of data. Schlieren photography was used for an additional study.