Tutorials in Mathematical Biosciences IV


Book Description

This book offers an introduction to fast growing research areas in evolution of species, population genetics, ecological models, and population dynamics. It reviews the concept and methodologies of phylogenetic trees, introduces ecological models, examines a broad range of ongoing research in population dynamics, and deals with gene frequencies under the action of migration and selection. The book features computational schemes, illustrations, and mathematical theorems.




Tutorials in Mathematical Biosciences II


Book Description

This book presents a series of models in the general area of cell physiology and signal transduction, with particular attention being paid to intracellular calcium dynamics, and the role played by calcium in a variety of cell types. Calcium plays a crucial role in cell physiology, and the study of its dynamics lends insight into many different cellular processes. In particular, calcium plays a central role in muscular contraction, olfactory transduction and synaptic communication, three of the topics to be addressed in detail in this book. In addition to the models, much of the underlying physiology is presented, so that readers may learn both the mathematics and the physiology, and see how the models are applied to specific biological questions. It is intended primarily as a graduate text or a research reference. It will serve as a concise and up-to-date introduction to all those who wish to learn about the state of calcium dynamics modeling, and how such models are applied to physiological questions.




Tutorials in Mathematical Biosciences III


Book Description

This volume introduces some basic mathematical models for cell cycle, proliferation, cancer, and cancer therapy. Chapter 1 gives an overview of the modeling of the cell division cycle. Chapter 2 describes how tumor secretes growth factors to form new blood vessels in its vicinity, which provide it with nutrients it needs in order to grow. Chapter 3 explores the process that enables the tumor to invade the neighboring tissue. Chapter 4 models the interaction between a tumor and the immune system. Chapter 5 is concerned with chemotherapy; it uses concepts from control theory to minimize obstacles arising from drug resistance and from cell cycle dynamics. Finally, Chapter 6 reviews mathematical results for various cancer models.




Tutorials in Mathematical Biosciences I


Book Description

This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters. Chapter 2 is a self-contained introduction to dynamical systems and bifurcation theory, oriented towards neuronal dynamics. The theory is illustrated with a model of Parkinson's disease. Chapter 3 reviews the theory of coupled neural oscillators observed throughout the nervous systems at all levels; it describes how oscillations arise, what pattern they take, and how they depend on excitory or inhibitory synaptic connections. Chapter 4 specializes to one particular neuronal system, namely, the auditory system. It includes a self-contained introduction, from the anatomy and physiology of the inner ear to the neuronal network that connects the hair cells to the cortex, and describes various models of subsystems.







Mathematical Modeling in Systems Biology


Book Description

An introduction to the mathematical concepts and techniques needed for the construction and analysis of models in molecular systems biology. Systems techniques are integral to current research in molecular cell biology, and system-level investigations are often accompanied by mathematical models. These models serve as working hypotheses: they help us to understand and predict the behavior of complex systems. This book offers an introduction to mathematical concepts and techniques needed for the construction and interpretation of models in molecular systems biology. It is accessible to upper-level undergraduate or graduate students in life science or engineering who have some familiarity with calculus, and will be a useful reference for researchers at all levels. The first four chapters cover the basics of mathematical modeling in molecular systems biology. The last four chapters address specific biological domains, treating modeling of metabolic networks, of signal transduction pathways, of gene regulatory networks, and of electrophysiology and neuronal action potentials. Chapters 3–8 end with optional sections that address more specialized modeling topics. Exercises, solvable with pen-and-paper calculations, appear throughout the text to encourage interaction with the mathematical techniques. More involved end-of-chapter problem sets require computational software. Appendixes provide a review of basic concepts of molecular biology, additional mathematical background material, and tutorials for two computational software packages (XPPAUT and MATLAB) that can be used for model simulation and analysis.







Tutorials in Mathematical Biosciences I


Book Description

This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters. Chapter 2 is a self-contained introduction to dynamical systems and bifurcation theory, oriented towards neuronal dynamics. The theory is illustrated with a model of Parkinson's disease. Chapter 3 reviews the theory of coupled neural oscillators observed throughout the nervous systems at all levels; it describes how oscillations arise, what pattern they take, and how they depend on excitory or inhibitory synaptic connections. Chapter 4 specializes to one particular neuronal system, namely, the auditory system. It includes a self-contained introduction, from the anatomy and physiology of the inner ear to the neuronal network that connects the hair cells to the cortex, and describes various models of subsystems.







Introduction to Mathematical Biology


Book Description

This book is based on a one semester course that the authors have been teaching for several years, and includes two sets of case studies. The first includes chemostat models, predator-prey interaction, competition among species, the spread of infectious diseases, and oscillations arising from bifurcations. In developing these topics, readers will also be introduced to the basic theory of ordinary differential equations, and how to work with MATLAB without having any prior programming experience. The second set of case studies were adapted from recent and current research papers to the level of the students. Topics have been selected based on public health interest. This includes the risk of atherosclerosis associated with high cholesterol levels, cancer and immune interactions, cancer therapy, and tuberculosis. Readers will experience how mathematical models and their numerical simulations can provide explanations that guide biological and biomedical research. Considered to be the undergraduate companion to the more advanced book "Mathematical Modeling of Biological Processes" (A. Friedman, C.-Y. Kao, Springer – 2014), this book is geared towards undergraduate students with little background in mathematics and no biological background.