Tutorials in Mathematical Biosciences I


Book Description

This volume introduces some basic theories on computational neuroscience. Chapter 1 is a brief introduction to neurons, tailored to the subsequent chapters. Chapter 2 is a self-contained introduction to dynamical systems and bifurcation theory, oriented towards neuronal dynamics. The theory is illustrated with a model of Parkinson's disease. Chapter 3 reviews the theory of coupled neural oscillators observed throughout the nervous systems at all levels; it describes how oscillations arise, what pattern they take, and how they depend on excitory or inhibitory synaptic connections. Chapter 4 specializes to one particular neuronal system, namely, the auditory system. It includes a self-contained introduction, from the anatomy and physiology of the inner ear to the neuronal network that connects the hair cells to the cortex, and describes various models of subsystems.




Tutorials in Mathematical Biosciences IV


Book Description

This book offers an introduction to fast growing research areas in evolution of species, population genetics, ecological models, and population dynamics. It reviews the concept and methodologies of phylogenetic trees, introduces ecological models, examines a broad range of ongoing research in population dynamics, and deals with gene frequencies under the action of migration and selection. The book features computational schemes, illustrations, and mathematical theorems.




Tutorials in Mathematical Biosciences II


Book Description

This book presents a series of models in the general area of cell physiology and signal transduction, with particular attention being paid to intracellular calcium dynamics, and the role played by calcium in a variety of cell types. Calcium plays a crucial role in cell physiology, and the study of its dynamics lends insight into many different cellular processes. In particular, calcium plays a central role in muscular contraction, olfactory transduction and synaptic communication, three of the topics to be addressed in detail in this book. In addition to the models, much of the underlying physiology is presented, so that readers may learn both the mathematics and the physiology, and see how the models are applied to specific biological questions. It is intended primarily as a graduate text or a research reference. It will serve as a concise and up-to-date introduction to all those who wish to learn about the state of calcium dynamics modeling, and how such models are applied to physiological questions.







Partial Inner Product Spaces


Book Description

Partial Inner Product (PIP) Spaces are ubiquitous, e.g. Rigged Hilbert spaces, chains of Hilbert or Banach spaces (such as the Lebesgue spaces Lp over the real line), etc. In fact, most functional spaces used in (quantum) physics and in signal processing are of this type. The book contains a systematic analysis of PIP spaces and operators defined on them. Numerous examples are described in detail and a large bibliography is provided. Finally, the last chapters cover the many applications of PIP spaces in physics and in signal/image processing, respectively. As such, the book will be useful both for researchers in mathematics and practitioners of these disciplines.




Introduction to Complex Reflection Groups and Their Braid Groups


Book Description

This book covers basic properties of complex reflection groups, such as characterization, Steinberg theorem, Gutkin-Opdam matrices, Solomon theorem and applications, including the basic findings of Springer theory on eigenspaces.




Transseries and Real Differential Algebra


Book Description

Transseries are formal objects constructed from an infinitely large variable x and the reals using infinite summation, exponentiation and logarithm. They are suitable for modeling "strongly monotonic" or "tame" asymptotic solutions to differential equations and find their origin in at least three different areas of mathematics: analysis, model theory and computer algebra. They play a crucial role in Écalle's proof of Dulac's conjecture, which is closely related to Hilbert's 16th problem. The aim of the present book is to give a detailed and self-contained exposition of the theory of transseries, in the hope of making it more accessible to non-specialists.




Sobolev Gradients and Differential Equations


Book Description

A Sobolev gradient of a real-valued functional on a Hilbert space is a gradient of that functional taken relative to an underlying Sobolev norm. This book shows how descent methods using such gradients allow a unified treatment of a wide variety of problems in differential equations. For discrete versions of partial differential equations, corresponding Sobolev gradients are seen to be vastly more efficient than ordinary gradients. In fact, descent methods with these gradients generally scale linearly with the number of grid points, in sharp contrast with the use of ordinary gradients. Aside from the first edition of this work, this is the only known account of Sobolev gradients in book form. Most of the applications in this book have emerged since the first edition was published some twelve years ago. What remains of the first edition has been extensively revised. There are a number of plots of results from calculations and a sample MatLab code is included for a simple problem. Those working through a fair portion of the material have in the past been able to use the theory on their own applications and also gain an appreciation of the possibility of a rather comprehensive point of view on the subject of partial differential equations.




Nonlinear Optimization


Book Description

This volume collects the expanded notes of four series of lectures given on the occasion of the CIME course on Nonlinear Optimization held in Cetraro, Italy, from July 1 to 7, 2007. The Nonlinear Optimization problem of main concern here is the problem n of determining a vector of decision variables x ? R that minimizes (ma- n mizes) an objective function f(·): R ? R,when x is restricted to belong n to some feasible setF? R , usually described by a set of equality and - n n m equality constraints: F = {x ? R : h(x)=0,h(·): R ? R ; g(x) ? 0, n p g(·): R ? R }; of course it is intended that at least one of the functions f,h,g is nonlinear. Although the problem canbe stated in verysimpleterms, its solution may result very di?cult due to the analytical properties of the functions involved and/or to the number n,m,p of variables and constraints. On the other hand, the problem has been recognized to be of main relevance in engineering, economics, and other applied sciences, so that a great lot of e?ort has been devoted to develop methods and algorithms able to solve the problem even in its more di?cult and large instances. The lectures have been given by eminent scholars, who contributed to a great extent to the development of Nonlinear Optimization theory, methods and algorithms. Namely, they are: – Professor Immanuel M.