Twenty-One Lectures on Complex Analysis


Book Description

At its core, this concise textbook presents standard material for a first course in complex analysis at the advanced undergraduate level. This distinctive text will prove most rewarding for students who have a genuine passion for mathematics as well as certain mathematical maturity. Primarily aimed at undergraduates with working knowledge of real analysis and metric spaces, this book can also be used to instruct a graduate course. The text uses a conversational style with topics purposefully apportioned into 21 lectures, providing a suitable format for either independent study or lecture-based teaching. Instructors are invited to rearrange the order of topics according to their own vision. A clear and rigorous exposition is supported by engaging examples and exercises unique to each lecture; a large number of exercises contain useful calculation problems. Hints are given for a selection of the more difficult exercises. This text furnishes the reader with a means of learning complex analysis as well as a subtle introduction to careful mathematical reasoning. To guarantee a student’s progression, more advanced topics are spread out over several lectures. This text is based on a one-semester (12 week) undergraduate course in complex analysis that the author has taught at the Australian National University for over twenty years. Most of the principal facts are deduced from Cauchy’s Independence of Homotopy Theorem allowing us to obtain a clean derivation of Cauchy’s Integral Theorem and Cauchy’s Integral Formula. Setting the tone for the entire book, the material begins with a proof of the Fundamental Theorem of Algebra to demonstrate the power of complex numbers and concludes with a proof of another major milestone, the Riemann Mapping Theorem, which is rarely part of a one-semester undergraduate course.




Complex Analysis


Book Description

With this second volume, we enter the intriguing world of complex analysis. From the first theorems on, the elegance and sweep of the results is evident. The starting point is the simple idea of extending a function initially given for real values of the argument to one that is defined when the argument is complex. From there, one proceeds to the main properties of holomorphic functions, whose proofs are generally short and quite illuminating: the Cauchy theorems, residues, analytic continuation, the argument principle. With this background, the reader is ready to learn a wealth of additional material connecting the subject with other areas of mathematics: the Fourier transform treated by contour integration, the zeta function and the prime number theorem, and an introduction to elliptic functions culminating in their application to combinatorics and number theory. Thoroughly developing a subject with many ramifications, while striking a careful balance between conceptual insights and the technical underpinnings of rigorous analysis, Complex Analysis will be welcomed by students of mathematics, physics, engineering and other sciences. The Princeton Lectures in Analysis represents a sustained effort to introduce the core areas of mathematical analysis while also illustrating the organic unity between them. Numerous examples and applications throughout its four planned volumes, of which Complex Analysis is the second, highlight the far-reaching consequences of certain ideas in analysis to other fields of mathematics and a variety of sciences. Stein and Shakarchi move from an introduction addressing Fourier series and integrals to in-depth considerations of complex analysis; measure and integration theory, and Hilbert spaces; and, finally, further topics such as functional analysis, distributions and elements of probability theory.




Complex Analysis


Book Description

An introduction to complex analysis for students with some knowledge of complex numbers from high school. It contains sixteen chapters, the first eleven of which are aimed at an upper division undergraduate audience. The remaining five chapters are designed to complete the coverage of all background necessary for passing PhD qualifying exams in complex analysis. Topics studied include Julia sets and the Mandelbrot set, Dirichlet series and the prime number theorem, and the uniformization theorem for Riemann surfaces, with emphasis placed on the three geometries: spherical, euclidean, and hyperbolic. Throughout, exercises range from the very simple to the challenging. The book is based on lectures given by the author at several universities, including UCLA, Brown University, La Plata, Buenos Aires, and the Universidad Autonomo de Valencia, Spain.




Visual Complex Analysis


Book Description

This radical first course on complex analysis brings a beautiful and powerful subject to life by consistently using geometry (not calculation) as the means of explanation. Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack of advanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicated with the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.




Complex Analysis in one Variable


Book Description

This book is based on a first-year graduate course I gave three times at the University of Chicago. As it was addressed to graduate students who intended to specialize in mathematics, I tried to put the classical theory of functions of a complex variable in context, presenting proofs and points of view which relate the subject to other branches of mathematics. Complex analysis in one variable is ideally suited to this attempt. Of course, the branches of mathema tics one chooses, and the connections one makes, must depend on personal taste and knowledge. My own leaning towards several complex variables will be apparent, especially in the notes at the end of the different chapters. The first three chapters deal largely with classical material which is avai lable in the many books on the subject. I have tried to present this material as efficiently as I could, and, even here, to show the relationship with other branches of mathematics. Chapter 4 contains a proof of Picard's theorem; the method of proof I have chosen has far-reaching generalizations in several complex variables and in differential geometry. The next two chapters deal with the Runge approximation theorem and its many applications. The presentation here has been strongly influenced by work on several complex variables.




Complex Analysis with Applications


Book Description

This textbook is intended for a one semester course in complex analysis for upper level undergraduates in mathematics. Applications, primary motivations for this text, are presented hand-in-hand with theory enabling this text to serve well in courses for students in engineering or applied sciences. The overall aim in designing this text is to accommodate students of different mathematical backgrounds and to achieve a balance between presentations of rigorous mathematical proofs and applications. The text is adapted to enable maximum flexibility to instructors and to students who may also choose to progress through the material outside of coursework. Detailed examples may be covered in one course, giving the instructor the option to choose those that are best suited for discussion. Examples showcase a variety of problems with completely worked out solutions, assisting students in working through the exercises. The numerous exercises vary in difficulty from simple applications of formulas to more advanced project-type problems. Detailed hints accompany the more challenging problems. Multi-part exercises may be assigned to individual students, to groups as projects, or serve as further illustrations for the instructor. Widely used graphics clarify both concrete and abstract concepts, helping students visualize the proofs of many results. Freely accessible solutions to every-other-odd exercise are posted to the book’s Springer website. Additional solutions for instructors’ use may be obtained by contacting the authors directly.




Complex Analysis through Examples and Exercises


Book Description

The book Complex Analysis through Examples and Exercises has come out from the lectures and exercises that the author held mostly for mathematician and physists . The book is an attempt to present the rat her involved subject of complex analysis through an active approach by the reader. Thus this book is a complex combination of theory and examples. Complex analysis is involved in all branches of mathematics. It often happens that the complex analysis is the shortest path for solving a problem in real circum stances. We are using the (Cauchy) integral approach and the (Weierstrass) power se ries approach . In the theory of complex analysis, on the hand one has an interplay of several mathematical disciplines, while on the other various methods, tools, and approaches. In view of that, the exposition of new notions and methods in our book is taken step by step. A minimal amount of expository theory is included at the beinning of each section, the Preliminaries, with maximum effort placed on weil selected examples and exercises capturing the essence of the material. Actually, I have divided the problems into two classes called Examples and Exercises (some of them often also contain proofs of the statements from the Preliminaries). The examples contain complete solutions and serve as a model for solving similar problems given in the exercises. The readers are left to find the solution in the exercisesj the answers, and, occasionally, some hints, are still given.







A Course in Complex Analysis


Book Description

"This textbook is intended for a year-long graduate course on complex analysis, a branch of mathematical analysis that has broad applications, particularly in physics, engineering, and applied mathematics. Based on nearly twenty years of classroom lectures, the book is accessible enough for independent study, while the rigorous approach will appeal to more experienced readers and scholars, propelling further research in this field. While other graduate-level complex analysis textbooks do exist, Zakeri takes a distinctive approach by highlighting the geometric properties and topological underpinnings of this area. Zakeri includes more than three hundred and fifty problems, with problem sets at the end of each chapter, along with additional solved examples. Background knowledge of undergraduate analysis and topology is needed, but the thoughtful examples are accessible to beginning graduate students and advanced undergraduates. At the same time, the book has sufficient depth for advanced readers to enhance their own research. The textbook is well-written, clearly illustrated, and peppered with historical information, making it approachable without sacrificing rigor. It is poised to be a valuable textbook for graduate students, filling a needed gap by way of its level and unique approach"--




Dynamics in One Complex Variable


Book Description

This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.