Book Description
Current information on two-component systems in bacteria including structure-function analysis, sensing mechanisms, atypical two-component systems, stress responses, developmental processes, virulence and symbiosis.
Author : Roy Gross
Publisher : Caister Academic Press Limited
Page : 0 pages
File Size : 22,52 MB
Release : 2012
Category : Science
ISBN : 9781908230089
Current information on two-component systems in bacteria including structure-function analysis, sensing mechanisms, atypical two-component systems, stress responses, developmental processes, virulence and symbiosis.
Author : Masayori Inouye
Publisher : Elsevier
Page : 539 pages
File Size : 34,21 MB
Release : 2002-11-13
Category : Science
ISBN : 0080534015
Living cells are constantly sensing environmental changes, and their abilities to sense these changes and adapt to them are essential for their survival. In bacteria, histidine kinases are the major sensors for these environmental stresses, enabling cells to adapt to new growth conditions. Written by leading experts in the field, this book provides an up-to-date and comprehensive review on the structure and function of histidine kinases. It also provides extensive information on the physiological roles of histidine kinases in bacteria and eukaryotes. An an essential reference for cell biologists, microbiologists, molecular biologists, and biochemists interested in signal transduction. Experimental biologists and pharmacologists studying signal transduction systems in living organisms will also find it a valuable research tool. - The first comprehensive book on the roles of histidine kinases in cells - 23 in-depth chapters written by leading experts in the field - Describes the most recent advances in the field of signal transduction
Author : Ryutaro Utsumi
Publisher : Springer Science & Business Media
Page : 257 pages
File Size : 28,49 MB
Release : 2008-12-05
Category : Medical
ISBN : 0387788859
This fascinating book encourages many microbiologists and students to enter the new world of signal transduction in microbiology. Over the past decade, a vast amount of exciting new information on the signal transduction pathway in bacteria has been unearthed.
Author : James A. Hoch
Publisher : Amer Society for Microbiology
Page : 488 pages
File Size : 47,49 MB
Release : 1995
Category : Medical
ISBN : 9781555810894
The human enteroviruses, particularly the polio viruses, have had a significant role in the history of medicine and microbiology; and continue to cause clinical problems, as well as provide targets for molecular investigation. This book offers a link between the basic science and clinical medicine.
Author : Frans J. de Bruijn
Publisher : John Wiley & Sons
Page : 1472 pages
File Size : 31,32 MB
Release : 2016-07-13
Category : Science
ISBN : 1119004896
Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.
Author : Rani Gupta
Publisher : Springer Nature
Page : 670 pages
File Size : 44,93 MB
Release : 2021-04-20
Category : Science
ISBN : 9811607230
This book provides useful information on microbial physiology and metabolism. The key aspects covered are prokaryotic diversity, growth physiology, basic metabolic pathways and their regulation, metabolic diversity with details of various unique pathways. Another focus area is stress physiology with details on varying environmental stresses, signal transduction, adaptation and survival. For instructional purposes, the book provides case studies, interesting facts, techniques etc. which help in showcasing the inter-disciplinary nature and bridge the gap between various aspects of applied microbiology.
Author : Pabulo H. Rampelotto
Publisher : Springer
Page : 452 pages
File Size : 37,94 MB
Release : 2018-10-12
Category : Science
ISBN : 3319690787
One of the most profound paradigms that have transformed our understanding about life over the last decades was the acknowledgement that microorganisms play a central role in shaping the past and present environments on Earth and the nature of all life forms. Each organism is the product of its history and all extant life traces back to common ancestors, which were microorganisms. Nowadays, microorganisms represent the vast majority of biodiversity on Earth and have survived nearly 4 billion years of evolutionary change. Microbial evolution occurred and continues to take place in a great variety of environmental conditions. However, we still know little about the processes of evolution as applied to microorganisms and microbial populations. In addition, the molecular mechanisms by which microorganisms communicate/interact with each other and with multicellular organisms remains poorly understood. Such patterns of microbe-host interaction are essential to understand the evolution of microbial symbiosis and pathogenesis.Recent advances in DNA sequencing, high-throughput technologies, and genetic manipulation systems have enabled studies that directly characterize the molecular and genomic bases of evolution, producing data that are making us change our view of the microbial world. The notion that mutations in the coding regions of genomes are, in combination with selective forces, the main contributors to biodiversity needs to be re-examined as evidence accumulates, indicating that many non-coding regions that contain regulatory signals show a high rate of variation even among closely related organisms. Comparative analyses of an increasing number of closely related microbial genomes have yielded exciting insight into the sources of microbial genome variability with respect to gene content, gene order and evolution of genes with unknown functions. Furthermore, laboratory studies (i.e. experimental microbial evolution) are providing fundamental biological insight through direct observation of the evolution process. They not only enable testing evolutionary theory and principles, but also have applications to metabolic engineering and human health. Overall, these studies ranging from viruses to Bacteria to microbial Eukaryotes are illuminating the mechanisms of evolution at a resolution that Darwin, Delbruck and Dobzhansky could barely have imagined. Consequently, it is timely to review and highlight the progress so far as well as discuss what remains unknown and requires future research. This book explores the current state of knowledge on the molecular mechanisms of microbial evolution with a collection of papers written by authors who are leading experts in the field.
Author : Michael L. Vasil
Publisher : American Society for Microbiology Press
Page : 1189 pages
File Size : 28,42 MB
Release : 2012-12-05
Category : Science
ISBN : 1555816762
A comprehensive compendium of scholarly contributions relating to bacterial virulence gene regulation. • Provides insights into global control and the switch between distinct infectious states (e.g., acute vs. chronic). • Considers key issues about the mechanisms of gene regulation relating to: surface factors, exported toxins and export mechanisms. • Reflects on how the regulation of intracellular lifestyles and the response to stress can ultimately have an impact on the outcome of an infection. • Highlights and examines some emerging regulatory mechanisms of special significance. • Serves as an ideal compendium of valuable topics for students, researchers and faculty with interests in how the mechanisms of gene regulation ultimately affect the outcome of an array of bacterial infectious diseases.
Author : Sudhir Sopory
Publisher : Springer Nature
Page : 669 pages
File Size : 22,19 MB
Release : 2019-11-09
Category : Science
ISBN : 9811389225
Plants provide a source of survival for all life on this planet. They are able to capture solar energy and convert it into food, feed, wood and medicines. Though sessile in nature, over many millions of years, plants have diversified and evolved from lower to higher life forms, spreading from sea level to mountains, and adapting to different ecozones. They have learnt to cope with challenging environmental conditions and various abiotic and biotic factors. Plants have also developed systems for monitoring the changing environment and efficiently utilizing resources for growth, flowering and reproduction, as well as mechanisms to counter the impact of pests and diseases and to communicate with other biological systems, like microbes and insects. This book discusses the “awareness” of plants and their ability to gather information through the perception of environmental cues, such as light, gravity, water, nutrients, touch and sound, and stresses. It also explores plants’ biochemical and molecular “computing” of the information to adjust their physiology and development to the advantage of the species. Further, it examines how plants communicate between their different organs and with other organisms, as well as the concepts of plant cognition, experience and memory, from both scientific and philosophical perspectives. Lastly, it addresses the phenomenon of death in plants. The epilogue presents an artist’s view of the beauty of the natural world, especially plant “architecture”. The book provides historical perspectives, comparisons with animal systems where needed, and general biochemical and molecular concepts and themes. Each chapter is selfcontained, but also includes cross talk with other chapters to offer an integrated view of plant life and allow readers to appreciate and admire the functioning of plant life from within and without. The book is a tribute by the Editor to his students, colleagues and co-workers and to those in whose labs he has worked.
Author : Ron Milo
Publisher : Garland Science
Page : 400 pages
File Size : 21,10 MB
Release : 2015-12-07
Category : Science
ISBN : 1317230698
A Top 25 CHOICE 2016 Title, and recipient of the CHOICE Outstanding Academic Title (OAT) Award. How much energy is released in ATP hydrolysis? How many mRNAs are in a cell? How genetically similar are two random people? What is faster, transcription or translation?Cell Biology by the Numbers explores these questions and dozens of others provid