Two-dimensional Materials for Photodetector


Book Description

Atomic thin two-dimensional (2D) materials are the thinnest forms of materials to ever occur in nature and have the potential to dramatically alter and revolutionize our material world. Some of the unique properties of these materials including wide photoresponse wavelength, passivated surfaces, strong interaction with incident light, and high mobility have created tremendous interest in photodetector application. This book provides a comprehensive state-of-the-art knowledge about photodetector technology in the range visible to infrared region using various 2D materials including graphene, transition metal dichalcogenides, III-V semiconductor, and so on. It consists of 10 chapters contributed by a team of experts in this exciting field. We believe that this book will provide new opportunities and guidance for the development of next-generation 2D photodetector.




Two-dimensional Materials for Photodetector


Book Description

Atomic thin two-dimensional (2D) materials are the thinnest forms of materials to ever occur in nature and have the potential to dramatically alter and revolutionize our material world. Some of the unique properties of these materials including wide photoresponse wavelength, passivated surfaces, strong interaction with incident light, and high mobility have created tremendous interest in photodetector application. This book provides a comprehensive state-of-the-art knowledge about photodetector technology in the range visible to infrared region using various 2D materials including graphene, transition metal dichalcogenides, III-V semiconductor, and so on. It consists of 10 chapters contributed by a team of experts in this exciting field. We believe that this book will provide new opportunities and guidance for the development of next-generation 2D photodetector.




Two-dimensional Materials


Book Description

There are only a few discoveries and new technologies in materials science that have the potential to dramatically alter and revolutionize our material world. Discovery of two-dimensional (2D) materials, the thinnest form of materials to ever occur in nature, is one of them. After isolation of graphene from graphite in 2004, a whole other class of atomically thin materials, dominated by surface effects and showing completely unexpected and extraordinary properties, has been created. This book provides a comprehensive view and state-of-the-art knowledge about 2D materials such as graphene, hexagonal boron nitride (h-BN), transition metal dichalcogenides (TMD) and so on. It consists of 11 chapters contributed by a team of experts in this exciting field and provides latest synthesis techniques of 2D materials, characterization and their potential applications in energy conservation, electronics, optoelectronics and biotechnology.




2D Metal Carbides and Nitrides (MXenes)


Book Description

This book describes the rapidly expanding field of two-dimensional (2D) transition metal carbides and nitrides (MXenes). It covers fundamental knowledge on synthesis, structure, and properties of these new materials, and a description of their processing, scale-up and emerging applications. The ways in which the quickly expanding family of MXenes can outperform other novel nanomaterials in a variety of applications, spanning from energy storage and conversion to electronics; from water science to transportation; and in defense and medical applications, are discussed in detail.




Light-Emitting Diodes and Photodetectors


Book Description

This book provides a detailed overview of the most recent advances in the fascinating world of light-emitting diodes (LEDs), organic light-emitting diodes (OLEDs), and photodetectors (PDs). Chapters in Section 1 discuss the different types and designs of LEDs/OLEDs and their use in light output, color rendering, and more. Chapters in Section 2 examine innovative structures, emerging materials, and physical effects of PDs. This book is a useful resource for students and scientists working in the field of photonics and advanced technologies.




Photodetectors


Book Description

Photodetectors: Materials, Devices and Applications discusses the devices that convert light to electrical signals, key components in communication, computation, and imaging systems. In recent years, there has been significant improvement in photodetector performance, and this important book reviews some of the key advances in the field. Part one covers materials, detector types, and devices, and includes discussion of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, low-temperature grown gallium arsenide, plasmonic, Si photomultiplier tubes, and organic photodetectors, while part two focuses on important applications of photodetectors, including microwave photonics, communications, high-speed single photon detection, THz detection, resonant cavity enhanced photodetection, photo-capacitors and imaging. Reviews materials, detector types and devices Addresses fabrication techniques, and the advantages and limitations and different types of photodetector Considers a range of application for this important technology Includes discussions of silicon photonics, detectors based on reduced dimensional charge systems, carbon nanotubes, graphene, nanowires, and more




Quantum Dot Photodetectors


Book Description

This book presents a comprehensive overview of state-of-the-art quantum dot photodetectors, including device fabrication technologies, optical engineering/manipulation strategies, and emerging photodetectors with building blocks of novel quantum dots (e.g. perovskite) as well as their hybrid structured (e.g. 0D/2D) materials. Semiconductor quantum dots have attracted much attention due to their unique quantum confinement effect, which allows for the facile tuning of optical properties that are promising for next-generation optoelectronic applications. Among these remarkable properties are large absorption coefficient, high photosensitivity, and tunable optical spectrum from ultraviolet/visible to infrared region, all of which are very attractive and favorable for photodetection applications. The book covers both fundamental and frontier research in order to stimulate readers' interests in developing novel ideas for semiconductor photodetectors at the center of future developments in materials science, nanofabrication technology and device commercialization. The book provides a knowledge sharing platform and can be used as a reference for researchers working in the fields of photonics, materials science, and nanodevices.




Infrared Photodetectors Based on Low-Dimensional Materials


Book Description

This book is focused on the study of physical mechanisms and device design for achieving high-performance infrared photodetection based on low-dimensional materials. Through theory analysis, material characterization and photo-electric measurements, it provides solutions to the trade-off problems which are commonly encountered in traditional infrared photodetectors and presents novel methods to improve the responsivity, detectivity and response speed. Researchers and scientists in the field of opto-electronic device can benefit from the book.




Plasmonics


Book Description

The title of this book, Plasmonics: Principles and Applications, encompasses theory, technical issues, and practical applications which are of interest for diverse classes of the plasmonics. The book is a collection of the contemporary researches and developments in the area of plasmonics technology. It consists of 21 chapters that focus on interesting topics of modeling and computational methods, plasmonic structures for light transmission, focusing, and guiding, emerging concepts, and applications.




2D Materials


Book Description

Two-dimensional (2D) materials have attracted a great deal of attention in recent years due to their potential applications in gas/chemical sensors, healthcare monitoring, biomedicine, electronic skin, wearable sensing technology and advanced electronic devices. Graphene is one of today's most popular 2D nanomaterials alongside boron nitrides, molybdenum disulfide, black phosphorus and metal oxide nanosheets, all of which open up new opportunities for future devices. This book provides insights into models and theoretical backgrounds, important properties, characterizations and applications of 2D materials, including graphene, silicon nitride, aluminum nitride, ZnO thin film, phosphorene and molybdenum disulfide.