Two-Generator Discrete Subgoups of $PSL(2, R)$


Book Description

The discreteness problem is the problem of determining whether or not a two-generator subgroup of $PSL(2, R)$ is discrete. Historically, papers on this old and subtle problem have been known for their errors and omissions. This book presents the first complete geometric solution to the discreteness problem by building upon cases previously presented by Gilman and Maskit and by developing a theory of triangle group shinglings/tilings of the hyperbolic plane and a theory explaining why the solution must take the form of an algorithm. This work is a thoroughly readable exposition that captures the beauty of the interplay between the algebra and the geometry of the solution.




Computational Aspects of Discrete Subgroups of Lie Groups


Book Description

This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.




Locally Finite, Planar, Edge-Transitive Graphs


Book Description

The nine finite, planar, 3-connected, edge-transitive graphs have been known and studied for many centuries. The infinite, locally finite, planar, 3-connected, edge-transitive graphs can be classified according to the number of their end. The 1-ended graphs in this class were identified by Grünbaum and Shephard; Watkins characterized the 2-ended members. Any remaining graphs in this class must have uncountably may ends. In this work, infinite-ended members of this class are shown to exist. A more detailed classification scheme in terms of the types of Petrie walks in the graphs in this class and the local structure of their automorphism groups is presented.




The Operator Hilbert Space $OH$, Complex Interpolation and Tensor Norms


Book Description

In the recently developed duality theory of operator spaces, bounded operators are replaced by 'completely bounded' ones, isomorphism by 'complete isomorphisms' and Banach spaces by 'operator spaces'. This allows for distinguishing between the various ways in which a given Banach space can be embedded isometrically into [italic capital]B([italic capital]H) (with H being Hilbert). One of the main results is the observation that there is a central object in this class: there is a unique self dual Hilbertian operator space (which we denote by [italic capitals]OH) which seems to play the same central role in the category of operator spaces that Hilbert spaces play in the category of Banach spaces.




The Structure of $k$-$CS$- Transitive Cycle-Free Partial Orders


Book Description

The class of cycle-free partial orders (CFPOs) is defined, and the CFPOs fulfilling a natural transitivity assumption, called k-connected set transitivity (k-CS-transitivity), are analysed in some detail. Classification in many of the interesting cases is given. This work generlizes Droste's classification of the countable k-transitive trees (k>1). In a CFPO, the structure can be branch downwards as well as upwards, and can do so repeatedely (though it neverr returns to the starting point by a cycle). Mostly it is assumed that k>2 and that all maximal chains are finite. The main classification splits into the sporadic and skeletal cases. The former is complete in all cardinalities. The latter is performed only in the countable case. The classification is considerably more complicated than for trees, and skeletal CFPOs exhibit rich, elaborate and rather surprising behaviour.




Some Connections between Isoperimetric and Sobolev-type Inequalities


Book Description

For Borel probability measures on metric spaces, this text studies the interplay between isoperimetric and Sobolev-type inequalities. In particular the question of finding optimal constants via isoperimetric quantities is explored. Also given are necessary and sufficient conditions for the equivalence between the extremality of some sets in the isoperimetric problem and the validity of some analytic inequalities. The book devotes much attention to: the probability distributions on the real line; the normalized Lebesgue measure on the Euclidean sheres; and the canonical Gaussian measure on the Euclidean space.




Crossed Products with Continuous Trace


Book Description

This memoir presents an extensive study of strongly continuous actions of abelian locally compact groups on [italic capital]C*-algebras with continuous trace. Expositions of the Mackey-Green-Rieffel machine of induced representations and the theory of Morita equivalent [italic capital]C*-dynamical systems are included. There is also an elaboration of the representation theory of crossed products by actions of abelian groups on type I [italic capital]C*-algebras.




Geometry of Loop Spaces and the Cobar Construction


Book Description

The homology of iterated loop spaces [capital Greek]Omega [superscript]n [italic]X has always been a problem of major interest because it gives some insight into the homotopy of [italic]X, among other things. Therefore, if [italic]X is a CW-complex, one has been interested in small CW models for [capital Greek]Omega [superscript]n [italic]X in order to compute the cellular chain complex. The author proves a very general model theorem from which he can derive models, in addition to very technical proofs of the model theorem for several other models.




Model Theory and Linear Extreme Points in the Numerical Radius Unit Ball


Book Description

This memoir initiates a model theory-based study of the numerical radius norm. Guided by the abstract model theory of Jim Agler, the authors propose a decomposition for operators that is particularly useful in understanding their properties with respect to the numerical radius norm. Of the topics amenable to investigation with these tools, the following are presented: a complete description of the linear extreme points of the non-matrix (numerical radius) unit ball; several equivalent characterizations of matricial extremals in the unit ball, that is, those members which do not allow a nontrivial extension remaining in the unit ball; and applications to numerical ranges of matrices, including a complete parameterization of all matrices whose numerical ranges are closed disks.




Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions


Book Description

We investigate several topics related to the local behavior of functions: pointwise Hölder regularity, local scaling invariance and very oscillatory "chirp-like" behaviors. Our main tool is to relate these notions to two-microlocal conditions which are defined either on the Littlewood-Paley decomposition or on the wavelet transform. We give characterizations and the main properties of these two-microlocal spaces and we give several applications, such as bounds on the dimension of the set of Hölder singularities of a function, Sobolev regularity of trace functions, and chirp expansions of specific functions.