Two-Phase Flow for Automotive and Power Generation Sectors


Book Description

This book focuses on the two-phase flow problems relevant in the automotive and power generation sectors. It includes fundamental studies on liquid–gas two-phase interactions, nucleate and film boiling, condensation, cavitation, suspension flows as well as the latest developments in the field of two-phase problems pertaining to power generation systems. It also discusses the latest analytical, numerical and experimental techniques for investigating the role of two-phase flows in performance analysis of devices like combustion engines, gas turbines, nuclear reactors and fuel cells. The wide scope of applications of this topic makes this book of interest to researchers and professionals alike.




Vehicle Thermal Management


Book Description

The efficiency of thermal systems (HVAC, engine cooling, transmission, and power steering) has improved greatly over the past few years. Operating these systems typically requires a significant amount of energy, however, which could adversely affect vehicle performance. To provide customers the level of comfort that they demand in an energy-efficient manner, innovative approaches must be developed. Vehicle Thermal Management: Heat Exchangers & Climate Control is an essential resource for engineers and designers working on thermal systems, presenting the most recent and relevant technical papers that focus on this important vehicle component. Chapters include: Heating and Air Conditioning Engine Cooling Underhood Thermal Environment Heat Transfer in Engines Heat Exchangers New Technologies







Energy


Book Description




Fossil Energy Update


Book Description




Geothermal Energy Update


Book Description




University of Michigan Official Publication


Book Description

Each number is the catalogue of a specific school or college of the University.




Physics of Porous Media


Book Description




Lees' Loss Prevention in the Process Industries


Book Description

Over the last three decades the process industries have grown very rapidly, with corresponding increases in the quantities of hazardous materials in process, storage or transport. Plants have become larger and are often situated in or close to densely populated areas. Increased hazard of loss of life or property is continually highlighted with incidents such as Flixborough, Bhopal, Chernobyl, Three Mile Island, the Phillips 66 incident, and Piper Alpha to name but a few. The field of Loss Prevention is, and continues to, be of supreme importance to countless companies, municipalities and governments around the world, because of the trend for processing plants to become larger and often be situated in or close to densely populated areas, thus increasing the hazard of loss of life or property. This book is a detailed guidebook to defending against these, and many other, hazards. It could without exaggeration be referred to as the "bible" for the process industries. This is THE standard reference work for chemical and process engineering safety professionals. For years, it has been the most complete collection of information on the theory, practice, design elements, equipment, regulations and laws covering the field of process safety. An entire library of alternative books (and cross-referencing systems) would be needed to replace or improve upon it, but everything of importance to safety professionals, engineers and managers can be found in this all-encompassing reference instead. Frank Lees' world renowned work has been fully revised and expanded by a team of leading chemical and process engineers working under the guidance of one of the world’s chief experts in this field. Sam Mannan is professor of chemical engineering at Texas A&M University, and heads the Mary Kay O’Connor Process Safety Center at Texas A&M. He received his MS and Ph.D. in chemical engineering from the University of Oklahoma, and joined the chemical engineering department at Texas A&M University as a professor in 1997. He has over 20 years of experience as an engineer, working both in industry and academia. New detail is added to chapters on fire safety, engineering, explosion hazards, analysis and suppression, and new appendices feature more recent disasters. The many thousands of references have been updated along with standards and codes of practice issued by authorities in the US, UK/Europe and internationally. In addition to all this, more regulatory relevance and case studies have been included in this edition. Written in a clear and concise style, Loss Prevention in the Process Industries covers traditional areas of personal safety as well as the more technological aspects and thus provides balanced and in-depth coverage of the whole field of safety and loss prevention. * A must-have standard reference for chemical and process engineering safety professionals * The most complete collection of information on the theory, practice, design elements, equipment and laws that pertain to process safety * Only single work to provide everything; principles, practice, codes, standards, data and references needed by those practicing in the field




Advances in Thermal Engineering, Manufacturing, and Production Management


Book Description

This book presents the selected peer-reviewed proceedings of the International Conference on Thermal Engineering and Management Advances (ICTEMA 2020). The contents discuss latest research in the areas of thermal engineering, manufacturing engineering, and production management. Some of the topics covered include multiphase fluid flow, turbulent flows, reactive flows, atmospheric flows, combustion and propulsion, computational methods for thermo-fluid arena, micro and nanofluidics, renewable energy and environment sustainability, non-conventional energy resources, energy principles and management, machine dynamics and manufacturing, casting and forming, green manufacturing, production planning and management, quality control and management, and traditional and non-traditional manufacturing. The contents of this book will be useful for students, researchers as well as professionals working in the area of mechanical engineering and allied fields.