Distribution of Values of Holomorphic Mappings


Book Description

A vast literature has grown up around the value distribution theory of meromorphic functions, synthesized by Rolf Nevanlinna in the 1920s and singled out by Hermann Weyl as one of the greatest mathematical achievements of this century. The multidimensional aspect, involving the distribution of inverse images of analytic sets under holomorphic mappings of complex manifolds, has not been fully treated in the literature. This volume thus provides a valuable introduction to multivariate value distribution theory and a survey of some of its results, rich in relations to both algebraic and differential geometry and surely one of the most important branches of the modern geometric theory of functions of a complex variable. Since the book begins with preparatory material from the contemporary geometric theory of functions, only a familiarity with the elements of multidimensional complex analysis is necessary background to understand the topic. After proving the two main theorems of value distribution theory, the author goes on to investigate further the theory of holomorphic curves and to provide generalizations and applications of the main theorems, focusing chiefly on the work of Soviet mathematicians.




Selected Works of Phillip A. Griffiths with Commentary


Book Description

Containing four parts such as Analytic Geometry, Algebraic Geometry, Variations of Hodge Structures, and Differential Systems that are organized according to the subject matter, this title provides the reader with a panoramic view of important and exciting mathematics during the second half of the 20th century.







Contributions to Analysis


Book Description

Contributions to Analysis: A Collection of Papers Dedicated to Lipman Bers is a compendium of papers provided by Bers, friends, students, colleagues, and professors. These papers deal with Teichmuller spaces, Kleinian groups, theta functions, algebraic geometry. Other papers discuss quasiconformal mappings, function theory, differential equations, and differential topology. One paper discusses the results of the rigidity theorem of Mostow and its generalization by Marden in relation to geometric properties of Kleinian groups of the first kind. These results, obtained by planar methods, are presented in terms of the hyperbolic 3-space language, which is a natural pedestal in approaching the action of the Kleinian groups. Another paper reviews Riemann's vanishing theorem which solves the Jacobi inversion problem, by relating the vanishing properties of the theta function (particularly at half periods) to properties of certain linear series on the Riemann surface. One paper examines the problem of obtaining relations among the periods of the differentials of first kind on a compact Riemann surface. An application of a computer program involves supersonic transport. The program is based on the hodograph transformation and a method of complex characteristics to calculate profiles that are shock-less at a specified angle of attack, or at a specified subsonic free-stream Mach number. The collection can prove useful for engineers, statisticians, students, and professors in advance mathematics or courses related to aeronautics.




Hyperbolic Complex Spaces


Book Description

In the three decades since the introduction of the Kobayashi distance, the subject of hyperbolic complex spaces and holomorphic mappings has grown to be a big industry. This book gives a comprehensive and systematic account on the Carathéodory and Kobayashi distances, hyperbolic complex spaces and holomorphic mappings with geometric methods. A very complete list of references should be useful for prospective researchers in this area.




Geometry of Holomorphic Mappings


Book Description

This monograph explores the problem of boundary regularity and analytic continuation of holomorphic mappings between domains in complex Euclidean spaces. Many important methods and techniques in several complex variables have been developed in connection with these questions, and the goal of this book is to introduce the reader to some of these approaches and to demonstrate how they can be used in the context of boundary properties of holomorphic maps. The authors present substantial results concerning holomorphic mappings in several complex variables with improved and often simplified proofs. Emphasis is placed on geometric methods, including the Kobayashi metric, the Scaling method, Segre varieties, and the Reflection principle. Geometry of Holomorphic Mappings will provide a valuable resource for PhD students in complex analysis and complex geometry; it will also be of interest to researchers in these areas as a reference.




Introduction to Holomorphic Functions of Several Variables, Volume II


Book Description

Introduction to Holomorphlc Functions of SeveralVariables, Volumes 1-111 provide an extensiveintroduction to the Oka-Cartan theory of holomorphicfunctions of several variables and holomorphicvarieties. Each volume covers a different aspect andcan be read independently.







Complex Analysis and Dynamical Systems IV


Book Description

The papers in this volume cover a wide variety of topics in the geometric theory of functions of one and several complex variables, including univalent functions, conformal and quasiconformal mappings, and dynamics in infinite-dimensional spaces. In addition, there are several articles dealing with various aspects of Lie groups, control theory, and optimization. Taken together, the articles provide the reader with a panorama of activity in complex analysis and quasiconformal mappings, drawn by a number of leading figures in the field. The companion volume (Contemporary Mathematics, Volume 554) is devoted to general relativity, geometry, and PDE.




Several Complex Variables II


Book Description

Plurisubharmonic functions playa major role in the theory of functions of several complex variables. The extensiveness of plurisubharmonic functions, the simplicity of their definition together with the richness of their properties and. most importantly, their close connection with holomorphic functions have assured plurisubharmonic functions a lasting place in multidimensional complex analysis. (Pluri)subharmonic functions first made their appearance in the works of Hartogs at the beginning of the century. They figure in an essential way, for example, in the proof of the famous theorem of Hartogs (1906) on joint holomorphicity. Defined at first on the complex plane IC, the class of subharmonic functions became thereafter one of the most fundamental tools in the investigation of analytic functions of one or several variables. The theory of subharmonic functions was developed and generalized in various directions: subharmonic functions in Euclidean space IRn, plurisubharmonic functions in complex space en and others. Subharmonic functions and the foundations ofthe associated classical poten tial theory are sufficiently well exposed in the literature, and so we introduce here only a few fundamental results which we require. More detailed expositions can be found in the monographs of Privalov (1937), Brelot (1961), and Landkof (1966). See also Brelot (1972), where a history of the development of the theory of subharmonic functions is given.