Two-sided Ideals in Leavitt Path Algebras


Book Description

Leavitt path algebras are a natural generalization of the Leavitt algebras, which are a class of algebras introduced by Leavitt in 1962. For a directed graph $E$, the Leavitt path algebra $L_K(E)$ of $E$ with coefficients in $K$ has received much recent attention both from algebraists and analysts over the last decade, due to the fact that they have some immediate structural connections with graph $C*̂$-algebras. So far, some of the algebraic properties of Leavitt path algebras have been investigated, including primitivity, simplicity and being Noetherian. We explicitly describe two-sided ideals in Leavitt path algebras associated to an arbitrary graph. Our main result is that any two-sided ideal $I$ of a Leavitt path algebra associated to an arbitrary directed graph is generated by elements of the form $(v+\sum_{i=1-n} \lambda_i g[superscript i])(v - \sum_{e \in S} ee*̂$), where $g$ is a cycle based at vertex $v$, and $S$ is a finite subset of $s−1(v)$. We first use this result to describe the necessary and sufficient conditions on the arbitrary-sized graph $E$, such that the Leavitt path algebra associated to $E$ satisfies two-sided chain conditions. Then we show that this result can be used to unify and simplify many known results for Leavitt path algebras some of which have been proven by using established methodologies from $C*̂$-algebras.




Leavitt Path Algebras


Book Description

This book offers a comprehensive introduction by three of the leading experts in the field, collecting fundamental results and open problems in a single volume. Since Leavitt path algebras were first defined in 2005, interest in these algebras has grown substantially, with ring theorists as well as researchers working in graph C*-algebras, group theory and symbolic dynamics attracted to the topic. Providing a historical perspective on the subject, the authors review existing arguments, establish new results, and outline the major themes and ring-theoretic concepts, such as the ideal structure, Z-grading and the close link between Leavitt path algebras and graph C*-algebras. The book also presents key lines of current research, including the Algebraic Kirchberg Phillips Question, various additional classification questions, and connections to noncommutative algebraic geometry. Leavitt Path Algebras will appeal to graduate students and researchers working in the field and related areas, such as C*-algebras and symbolic dynamics. With its descriptive writing style, this book is highly accessible.




Leavitt Path Algebras and Classical K-Theory


Book Description

The book offers a comprehensive introduction to Leavitt path algebras (LPAs) and graph C*-algebras. Highlighting their significant connection with classical K-theory—which plays an important role in mathematics and its related emerging fields—this book allows readers from diverse mathematical backgrounds to understand and appreciate these structures. The articles on LPAs are mostly of an expository nature and the ones dealing with K-theory provide new proofs and are accessible to interested students and beginners of the field. It is a useful resource for graduate students and researchers working in this field and related areas, such as C*-algebras and symbolic dynamics.




Algebra and Related Topics with Applications


Book Description

This proceedings is a collection of research papers on algebra and related topics, most of which were presented at the International Conference on Algebra and Related Topics with Applications (ICARTA-19), held at the Department of Mathematics, Aligarh Muslim University, Aligarh, India, from 17–19 December 2019. It covers a wide range of topics on ring theory, coding theory, cryptography, and graph theory. In addition to highlighting the latest research being done in algebra, the book also addresses the abundant topics of algebra particularly semigroups, groups, derivations in rings, rings and modules, group rings, matrix algebra, triangular algebra, polynomial rings and lattice theory. Apart from these topics, the book also discusses applications in cryptology, coding theory, and graph theory.




Ring Theory and Its Applications


Book Description

This volume contains the proceedings of the Ring Theory Session in honor of T. Y. Lam's 70th birthday, at the 31st Ohio State-Denison Mathematics Conference, held from May 25-27, 2012, at The Ohio State University, Columbus, Ohio. Included are expository articles and research papers covering topics such as cyclically presented modules, Eggert's conjecture, the Mittag-Leffler conditions, clean rings, McCoy rings, QF rings, projective and injective modules, Baer modules, and Leavitt path algebras. Graduate students and researchers in many areas of algebra will find this volume valuable as the papers point out many directions for future work; in particular, several articles contain explicit lists of open questions.




2016 MATRIX Annals


Book Description

MATRIX is Australia’s international, residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each lasting 1-4 weeks. This book is a scientific record of the five programs held at MATRIX in its first year, 2016: - Higher Structures in Geometry and Physics - Winter of Disconnectedness - Approximation and Optimisation - Refining C*-Algebraic Invariants for Dynamics using KK-theory - Interactions between Topological Recursion, Modularity, Quantum Invariants and Low- dimensional Topology The MATRIX Scientific Committee selected these programs based on their scientific excellence and the participation rate of high-profile international participants. Each program included ample unstructured time to encourage collaborative research; some of the longer programs also included an embedded conference or lecture series. The articles are grouped into peer-reviewed contributions and other contributions. The peer-reviewed articles present original results or reviews on selected topics related to the MATRIX program; the remaining contributions are predominantly lecture notes based on talks or activities at MATRIX.




Advances in Rings, Modules and Factorizations


Book Description

Occasioned by the international conference "Rings and Factorizations" held in February 2018 at University of Graz, Austria, this volume represents a wide range of research trends in the theory of commutative and non-commutative rings and their modules, including multiplicative ideal theory, Dedekind and Krull rings and their generalizations, rings of integer valued-polynomials, topological aspects of ring theory, factorization theory in rings and semigroups and direct-sum decompositions of modules. The volume will be of interest to researchers seeking to extend or utilize work in these areas as well as graduate students wishing to find entryways into active areas of current research in algebra. A novel aspect of the volume is an emphasis on how diverse types of algebraic structures and contexts (rings, modules, semigroups, categories) may be treated with overlapping and reinforcing approaches.




Advances in Rings and Modules


Book Description

This volume, dedicated to Bruno J. Müller, a renowned algebraist, is a collection of papers that provide a snapshot of the diversity of themes and applications that interest algebraists today. The papers highlight the latest progress in ring and module research and present work done on the frontiers of the topics discussed. In addition, selected expository articles are included to give algebraists and other mathematicians, including graduate students, an accessible introduction to areas that may be outside their own expertise.




Refinement Monoids, Equidecomposability Types, and Boolean Inverse Semigroups


Book Description

Adopting a new universal algebraic approach, this book explores and consolidates the link between Tarski's classical theory of equidecomposability types monoids, abstract measure theory (in the spirit of Hans Dobbertin's work on monoid-valued measures on Boolean algebras) and the nonstable K-theory of rings. This is done via the study of a monoid invariant, defined on Boolean inverse semigroups, called the type monoid. The new techniques contrast with the currently available topological approaches. Many positive results, but also many counterexamples, are provided.




Groups, Rings, Group Rings, and Hopf Algebras


Book Description

This volume contains the proceedings of the International Conference on Groups, Rings, Group Rings, and Hopf Algebras, held October 2–4, 2015 at Loyola University, Chicago, IL, and the AMS Special Session on Groups, Rings, Group Rings, and Hopf Algebras, held October 3–4, 2015, at Loyola University, Chicago, IL. Both conferences were held in honor of Donald S. Passman's 75th Birthday. Centered in the area of group rings and algebras, this volume contains a mixture of cutting edge research topics in group theory, ring theory, algebras and their representations, Hopf algebras and quantum groups.