Ultra-Cold Atoms and Bec in a 1d Quasi-Electrostatic Optical Lattice


Book Description

Ultra-cold atoms and Bose-Einstein condensate(BEC) in optical lattices is an ideal test-bed for fundamental models of condensed matter Physics. Experiments with cold atoms and BEC are quite challenging and requires the knowledge of a wide variety of experimental methods and techniques. In this book, the basic concepts of laser cooling and Bose-Einstein condensation are discussed along with a description of the experimental apparatus and methods. A source of cold atomic beam with high flux is described as a favourable starting point for a BEC experiment with high initial number of atoms. The theoretical basics of optical dipole trapping in harmonic traps and optical lattices are described along with the experimental techniques for efficient loading into a dipole trap and optical lattice. All-optical Bose-Einstein condensation in optical dipole trap and a 1D optical lattice is described followed by the study of mean-field dynamics in an array of micro-condensates produced in the 1D optical lattice. This book would provide a basic intoduction to laser-cooling and all-optical BEC experiments to newcomers in the field as well as a handy reference book for the experienced researchers.




Ultracold Atoms in Optical Lattices


Book Description

This book explores the physics of atoms frozen to ultralow temperatures and trapped in periodic light structures. It introduces the reader to the spectacular progress achieved on the field of ultracold gases and describes present and future challenges in condensed matter physics, high energy physics, and quantum computation.




Ultracold Bosonic and Fermionic Gases


Book Description

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. - Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists - Discusses landmark experiments and their fruitful interplay with basic theoretical ideas - Comprehensible rather than comprehensive, containing only minimal equations




Quantum Many-Body Physics of Ultracold Molecules in Optical Lattices


Book Description

This thesis investigates ultracold molecules as a resource for novel quantum many-body physics, in particular by utilizing their rich internal structure and strong, long-range dipole-dipole interactions. In addition, numerical methods based on matrix product states are analyzed in detail, and general algorithms for investigating the static and dynamic properties of essentially arbitrary one-dimensional quantum many-body systems are put forth. Finally, this thesis covers open-source implementations of matrix product state algorithms, as well as educational material designed to aid in the use of understanding such methods.




Ultracold Atoms in a Disordered Optical Lattice


Book Description

In this work, we describe the construction of an apparatus to create Bose-Einstein condensates of 87Rb atoms and load condensates into a disordered 3D optical lattice, realizing the DBH model. Also as part of this work, the major technical components needed to implement a stroboscopic quantum simulation scheme were constructed and a number of calculations were performed.




Quantum Precision Measurement and Cold Atom Physics


Book Description

Ever since the invention of the cesium atomic clock in 1955, quantum frequency standards have seen considerable development over the decades, as a representative of quantum precision measurement. The progress in frequency measurements achieved in the past allowed one to perform quantum precision measurements of other physical and technical quantities with unprecedented precision, whenever they could be traced back to a frequency measurement. Using atomic transitions as frequency reference, quantum frequency standards are far less susceptible to external perturbations, and the identity of microscopic particles allows easy replication of a quantum standard with the same frequency. With laser cooling and trapping, cold atomic ensembles eliminate Doppler shift broadening, and have become the go-to quantum reference when precision and new physics are pursued. The advancement of laser cooling and cold atom physics, in addition to novel physical matter states such as Bose-Einstein Condensation, give rise to new experimental techniques in quantum precision measurement, especially quantum frequency standards, such as cesium fountain clocks dictating the SI second, as well as optical lattice clocks and single-ion optical clocks pushing the frontier of quantum metrology. Other areas of quantum metrology, such as gravitometers and magnetometers, also benefit greatly from cold atoms. For practical applications, quantum frequency standards are usually required to be compact and portable, and thermal atoms in the form of atomic beams or vapor cells are utilized. Commercially available quantum frequency standards such as cesium beam clocks or rubidium clocks have become the cornerstone of navigation and timekeeping. Compact optical clocks based on various laser spectroscopic techniques have also been developed. As researchers strive to break through the limits of accurate quantum measurement and atomic temperature, new fields such as precise measurement, quantum computing and quantum simulation based on cold atoms are further opened up, and challenges still exist to explore new physical phenomena in the field of cold atoms. In honor of Prof. Yiqiu Wang on the occasion of his 90th birthday, the main goal of this Research Topic is to provide a platform to exhibit the recent achievements and reveal the future challenges in quantum precision measurement, as well as studies of cold atom physics with quantum metrology, closely related to the long-term scientific research areas of Prof. Yiqiu Wang. Both Original Research and Review articles are encouraged. Topics of interest to this collection include, but are not limited to: • Quantum precision measurements • Microwave atomic clocks and their applications • Optical frequency standards, laser spectroscopy, and their applications • Quantum measurement based on cold atom • Quantum computation and quantum simulation based on cold atom







Hubbard Model, The: Recent Results


Book Description

This collection of articles provides authoritative and up-to-date reviews on the Hubbard Model. It will be useful to graduate students and researchers in the field.




Nonlinear Localization, Controlled Transport and Collapse Suppression in Bose-Einstein Condensates


Book Description

This thesis includes theoretical studies regarding stability and manipulation of Bose-Einstein condensates (BECs) of ultra-cold atoms in 2D trapping geometry, as well as formation of steady states of exciton-polariton Bose-Einstein condensates created in solid states. We analyze and numerically model the dynamics and localization of the condensates using mean-field model. Chapter 1 contains an introduction to the physics of ultra-cold atom BEC and excitonpolariton BEC which provides a framework for the work presented in later chapters. In Chapter 2, we consider a method for achieving dynamically controllable transport of highly mobile matter-wave solitons in an ultra-cold atom BEC with attractive interparticle interaction loaded into a driven two-dimensional optical lattice. Our numerical analysis based on the mean-field model and the theory based on the effective particle approach demonstrate that fast, time-periodic rocking of the two-dimensional optical lattice enables efficient stabilization and manipulation of spatially localized matter wave packets via induced reconfigurable mobility channels. Chapter 3 consists of an investigation of the instability - collapse of a BEC with attractive interactions. In this chapter we explore the influence of an orbital angular momentum on the collapse of vortex-free elliptic clouds of Bose-Einstein condensates trapped in a radially symmetric harmonic potential or a rotating elliptic potential. The results of our analysis show that the number of trapped ultracold atoms corresponding to the collapse threshold can be radically increased for such rotating nonlinear matter waves in a radially harmonic trap. The results corresponding to a BEC cloud confined in a rotating elliptic trap show that the elongated stationary states can be parallel or perpendicular to the long axis of the trap and display bistable nature. In Chapter 4, we examine spatial localization and dynamical stability of Bose-Einstein condensates of exciton-polaritons in microcavities under the condition of off-resonant spatially inhomogeneous optical pumping both with and without a harmonic trapping potential. We employ the open-dissipative Gross-Pitaevskii model for describing an incoherently pumped polariton condensate coupled to an exciton reservoir. We reveal that spatial localization of the steady-state condensate occurs due to effective self-trapping created by the polariton flows, regardless of the presence of the external potential. A ground state of the polariton condensate with repulsive interactions between the quasiparticles represents a dynamically stable bright dissipative soliton. We also investigate the conditions for sustaining spatially localized structures, with nonzero angular momentum, in the form of single-charge vortices. Chapter 5 consider the existence of novel spatially localized states of exciton-polariton Bose-Einstein condensates in semiconductor microcavities with fabricated periodic inplane potentials. Our theory shows that, under the conditions of continuous nonresonant pumping, localization is observed for a wide range of optical pump parameters due to effective potentials self-induced by the polariton flows in the spatially periodic system. We show that the self-localization of exciton-polaritons in the lattice may occur both in the gaps and bands of the single-particle linear spectrum, and is dominated by the effects of gain and dissipation rather than the structured potential, in sharp contrast to the conservative condensates of ultra-cold alkali atoms.