Ultra-High Bypass Ratio Jet Noise


Book Description

The jet noise from a 1/15 scale model of a Pratt and Whitney Advanced Ducted Propulsor (ADP) was measured in the United Technology Research Center anechoic research tunnel (ART) under a range of operating conditions. Conditions were chosen to match engine operating conditions. Data were obtained at static conditions and at wind tunnel Mach numbers of 0.2, 0.27, and 0.35 to simulate inflight effects on jet noise. Due to a temperature dependence of the secondary nozzle area, the model nozzle secondary to primary area ratio varied from 7.12 at 100 percent thrust to 7.39 at 30 percent thrust. The bypass ratio varied from 10.2 to 11.8 respectively. Comparison of the data with predictions using the current Society of Automotive Engineers (SAE) Jet Noise Prediction Method showed that the current prediction method overpredicted the ADP jet noise by 6 decibels. The data suggest that a simple method of subtracting 6 decibels from the SAE Coaxial Jet Noise Prediction for the merged and secondary flow source components would result in good agreement between predicted and measured levels. The simulated jet noise flight effects with wind tunnel Mach numbers up to 0.35 produced jet noise inflight noise reductions up to 12 decibels. The reductions in jet noise levels were across the entire jet noise spectra, suggesting that the inflight effects affected all source noise components. Low, John K. C. Unspecified Center...







Ultra High Bypass Ratio Low Noise Engine Study


Book Description

A study was conducted to identify engine cycle and technologies needed for a regional aircraft which could be capable of achieving a 10 EPNdB reduction in community noise level relative to current FAR36 Stage 3 limits. The study was directed toward 100-passenger regional aircraft with engine configurations in the 15,000 pound thrust class. The study focused on Ultra High Bypass Ratio (UHBR) cycles due to low exhaust jet velocities and reduced fan tip speeds. The baseline engine for this study employed a gear-driven, 1000 ft/sec tip speed fan and had a cruise bypass ratio of 14:1. A revised engine configuration employing fan and turbine design improvements are predicted to be 9.2 dB below current takeoff limits and 12.8 dB below current approach limits. An economic analysis was also done by estimating Direct Operating Cost (DOC). Dalton, W. N., III Glenn Research Center NAS3-25950; WBS 22-781-30-12







Simulation of Supersonic Jet Noise Reduction Using Fluid Inserts for Low Bypass Ratio Turbofans


Book Description

The design constraints on jet engines for high performance supersonic military aircraft require lower bypass ratios and supersonic exhaust velocities, which result in very high noise levels. This is a great concern to the US Navy as the noise generated from the jet exhaust of high performance supersonic military aircraft can affect the hearing and performance of personnel working in close proximity of the aircraft. There have been reports about the US Department of Veteran Affairs spending over hundreds of millions of dollars in disability payments for hearing loss compensation to former Navy personnel. In addition to this, jet noise is also a source of annoyance in communities in the vicinity of airbases and military training routes.Over the years, several noise reduction methods have been proposed with varying levels of success. The most effective noise reduction strategies include the installation of chevrons, and the use of corrugated seals, among many others. One primary disadvantage of these technologies is that they are passive technologies and cannot be switched off or modified after take-off and hence may reduce overall aircraft performance. An active, though steady, noise reduction technology is the use of fluid inserts in the divergent section of a converging-diverging nozzle. The fluid inserts consist of rows of injectors that inject a small amount of bypass air into the diverging section of the nozzle. It has been shown that by altering the configuration and operating conditions of the fluid inserts, noise reduction for both mixing and shock noise can be achieved. Since this blowing can be controlled, the fluid inserts can be switched off or modified after take-off to minimize any performance penalty to the aircraft.Although considerable experimental research has been performed to explore the effects of fluid inserts on the jet exhaust, the available data have been found to be insufficient to correlate the noise reduction with changes in the flow-field due to the noise reduction device. The present study is an extension to the previousresearch on fluid inserts that uses Large Eddy Simulation (LES) with the Ffowcs Williams-Hawkings (FWH) analogy for farfield noise prediction. The simulations are carried out using a commercially available CFD package, STAR-CCM+. The project aims to simulate and analyze the unsteady flow changes associated withthe noise reduction device to help understand the detailed mechanisms for the observed noise reductions.Different fluid insert configurations are used to analyze the effect of individual injector placement in a fluid insert on noise generation. It is observed that the changes in upstream noise correlate extremely well with the shock structure of the fluid insert jets downstream of the nozzle exit. Further insight into the noisereduction patterns is obtained by using two-point space time correlations and the use of the modal techniques such as Proper Orthogonal Decomposition on the near-field data on the FWH surface, which show that fluid inserts reduce the amplitude of the noise radiating coherent structures. Using Doaks Momentum Potential Theory, it is observed that the changes associated with fluid insertson the hydrodynamic and acoustic modes correlate well with the far-field noise reduction.




Commercial Aircraft Propulsion and Energy Systems Research


Book Description

The primary human activities that release carbon dioxide (CO2) into the atmosphere are the combustion of fossil fuels (coal, natural gas, and oil) to generate electricity, the provision of energy for transportation, and as a consequence of some industrial processes. Although aviation CO2 emissions only make up approximately 2.0 to 2.5 percent of total global annual CO2 emissions, research to reduce CO2 emissions is urgent because (1) such reductions may be legislated even as commercial air travel grows, (2) because it takes new technology a long time to propagate into and through the aviation fleet, and (3) because of the ongoing impact of global CO2 emissions. Commercial Aircraft Propulsion and Energy Systems Research develops a national research agenda for reducing CO2 emissions from commercial aviation. This report focuses on propulsion and energy technologies for reducing carbon emissions from large, commercial aircraftâ€" single-aisle and twin-aisle aircraft that carry 100 or more passengersâ€"because such aircraft account for more than 90 percent of global emissions from commercial aircraft. Moreover, while smaller aircraft also emit CO2, they make only a minor contribution to global emissions, and many technologies that reduce CO2 emissions for large aircraft also apply to smaller aircraft. As commercial aviation continues to grow in terms of revenue-passenger miles and cargo ton miles, CO2 emissions are expected to increase. To reduce the contribution of aviation to climate change, it is essential to improve the effectiveness of ongoing efforts to reduce emissions and initiate research into new approaches.










Fundamentals of High Lift for Future Civil Aircraft


Book Description

This book reports on the latest numerical and experimental findings in the field of high-lift technologies. It covers interdisciplinary research subjects relating to scientific computing, aerodynamics, aeroacoustics, material sciences, aircraft structures, and flight mechanics. The respective chapters are based on papers presented at the Final Symposium of the Collaborative Research Center (CRC) 880, which was held on December 17-18, 2019 in Braunschweig, Germany. The conference and the research presented here were partly supported by the CRC 880 on “Fundamentals of High Lift for Future Civil Aircraft,” funded by the DFG (German Research Foundation). The papers offer timely insights into high-lift technologies for short take-off and landing aircraft, with a special focus on aeroacoustics, efficient high-lift, flight dynamics, and aircraft design.