Ultra-high-q Optical Microcavities


Book Description

Confinement and manipulation of photons using microcavities have triggered intense research interest in both basic and applied physics for more than a decade. Prominent examples are whispering gallery microcavities which confine photons by means of continuous total internal reflection along a curved and smooth surface. The long photon lifetime, strong field confinement, and in-plane emission characteristics make them promising candidates for enhancing light-matter interactions on a chip. In this book, we will introduce different ultra-high-Q whispering gallery microcavities, and focus on their applications in enhancing light-matter interaction, such as ultralow-threshold microlasing, highly sensitive optical biosensing, nonlinear optics, cavity quantum electrodynamics and cavity optomechanics.




Optical Microcavities


Book Description

Optical microcavities are structures that enable confinement of light to microscale volumes. The universal importance of these structures has made them indispensable to a wide range of fields. This important book describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leading researchers from each field. The topics include cavity QED and quantum information, nanophotonics and nanostructure interactions, wavelength switching and modulation in optical communications, optical chaos and biosensors.




Optical Processes In Microcavities


Book Description

The dielectric microstructures act as ultrahigh Q factors optical cavities, which modify the spontaneous emission rates and alter the spatial distributions of the input and output radiation. The editors have selected leading scientists who have made seminal contributions in different aspects of optical processes in microcavities. Every attempt has been made to unify the underlying physics pertaining to microcavities of various shapes. This book begins with a chapter on the role of microcavity modes with additional chapters on how these microcavity modes affect the spontaneous and stimulated emission rates, enhance nonlinear optical processes, used in cavity-QED and chemical physics experiments, aid in single-molecule detection, influence the design of microdisk semiconductor lasers, and how deformed cavities can be treated with classical chaos theory.




Optical Microcavities


Book Description

Optical microcavities are structures that enable confinement of lightto microscale volumes. The universal importance of these structureshas made them indispensable to a wide range of fields. This importantbook describes the many applications and the related physics, providing both a review and a tutorial of key subjects by leadingresearchers from each field




Microcavities


Book Description

Rapid development of microfabrication and assembly of nanostructures has opened up many opportunities to miniaturize structures that confine light, producing unusual and extremely interesting optical properties. This book addresses the large variety of optical phenomena taking place in confined solid state structures: microcavities. Realisations include planar and pillar microcavities, whispering gallery modes, and photonic crystals. The microcavities represent a unique laboratory for quantum optics and photonics. They exhibit a number of beautiful effects including lasing, superfluidity, superradiance, entanglement etc. Written by four practitioners strongly involved in experiments and theories of microcavities, it is addressed to any interested reader having a general physical background, but in particular to undergraduate and graduate students at physics faculties.




Optical Microresonators


Book Description

Optical Micro-Resonators are an exciting new field of research that has gained prominence in the past few years due to the emergence of new fabrication technologies. This book is the first detailed text on the theory, fabrication, and applications of optical micro-resonators, and will be found useful by both graduate students and researchers in the field.




Optical Supercomputing


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the Third International Workshop on Optical SuperComputing, OSC 2010, held in Bertinoro, Italy, in November 2010. The 13 papers presented were carefully reviewed and selected for inclusion in this book. Being an annual forum for research presentations on all facets of optical computing for solving hard computation tasks, OCS addresses the following topics of interest: designs or demonstrations of optical computing devices, algorithmics and complexity issues of optical computing, computation representation by photons and holograms, neural and brain inspired architectures, electro-optic devices for interacting with optical computing devices, practical implementations, analysis of existing devices and case studies, optical photonics and laser switching technologies, optical and photonic memories, optical signal processing subsystems, optical networks for high-performance computing, optical interconnections, quantum optical systems, applications and algorithms for optical devices, Alpha particles, X-rays, and nano-technologies for optical computing.




Photonic Microresonator Research and Applications


Book Description

This book details how to design and fabricate microresonators. It covers the latest in microresonator research and discusses them in photonic crystals, microsphere circuits and sensors. It includes application-oriented examples.




Nano-Net


Book Description

This book constitutes the proceedings of the 4th International Conference on Nano-Networks, Nano-Net 2009, held in Lucerne, Switherland, in October 2009. The 36 invited and regular papers address the whole spectrum of Nano-Networks and spans topis like modeling, simulation, statdards, architectural aspects, novel information and graph theory aspects, device physics and interconnects, nanorobotics as well as nano-biological systems. The volume also contains the workshop on Nano-Bio-Sensing Paradigms as well as the workshop on Brain Inspired Interconnects and Circuits.




MEMS/NEMS Sensors


Book Description

Due to the ever-expanding applications of micro/nano-electromechanical systems (NEMS/MEMS) as sensors and actuators, interest in their development has rapidly expanded over the past decade. Encompassing various excitation and readout schemes, the MEMS/NEMS devices transduce physical parameter changes, such as temperature, mass or stress, caused by changes in desired measurands, to electrical signals that can be further processed. Some common examples of NEMS/MEMS sensors include pressure sensors, accelerometers, magnetic field sensors, microphones, radiation sensors, and particulate matter sensors.