Fundamentals of Semiconductor Processing Technology


Book Description

The drive toward new semiconductor technologies is intricately related to market demands for cheaper, smaller, faster, and more reliable circuits with lower power consumption. The development of new processing tools and technologies is aimed at optimizing one or more of these requirements. This goal can, however, only be achieved by a concerted effort between scientists, engineers, technicians, and operators in research, development, and manufac turing. It is therefore important that experts in specific disciplines, such as device and circuit design, understand the principle, capabil ities, and limitations of tools and processing technologies. It is also important that those working on specific unit processes, such as lithography or hot processes, be familiar with other unit processes used to manufacture the product. Several excellent books have been published on the subject of process technologies. These texts, however, cover subjects in too much detail, or do not cover topics important to modem tech nologies. This book is written with the need for a "bridge" between different disciplines in mind. It is intended to present to engineers and scientists those parts of modem processing technologies that are of greatest importance to the design and manufacture of semi conductor circuits. The material is presented with sufficient detail to understand and analyze interactions between processing and other semiconductor disciplines, such as design of devices and cir cuits, their electrical parameters, reliability, and yield.




Rapid Thermal Processing


Book Description

This is the first definitive book on rapid thermal processing (RTP), an essential namufacturing technology for single-wafer processing in highly controlled environments. Written and edited by nine experts in the field, this book covers a range of topics for academics and engineers alike, moving from basic theory to advanced technology for wafer manufacturing. The book also provides new information on the suitability or RTP for thin film deposition, junction formation, silicides, epitaxy, and in situ processing. Complete discussions on equipment designs and comparisons between RTP and other processing approaches also make this book useful for supplemental information on silicon processing, VLSI processing, and integrated circuit engineering.




Ion Implantation Technology - 92


Book Description

Ion implantation technology has made a major contribution to the dramatic advances in integrated circuit technology since the early 1970's. The ever-present need for accurate models in ion implanted species will become absolutely vital in the future due to shrinking feature sizes. Successful wide application of ion implantation, as well as exploitation of newly identified opportunities, will require the development of comprehensive implant models. The 141 papers (including 24 invited papers) in this volume address the most recent developments in this field. New structures and possible approaches are described. The implications for ion implantation technology as well as additional observations of needs and opportunities are discussed. The volume will be of value to all those who are interested in acquiring a more complete understanding of the current developments in ion implantation processes and comprehensive implant models.







ULSI Semiconductor Technology Atlas


Book Description

More than 1,100 TEM images illustrate the science of ULSI The natural outgrowth of VLSI (Very Large Scale Integration), Ultra Large Scale Integration (ULSI) refers to semiconductor chips with more than 10 million devices per chip. Written by three renowned pioneers in their field, ULSI Semiconductor Technology Atlas uses examples and TEM (Transmission Electron Microscopy) micrographs to explain and illustrate ULSI process technologies and their associated problems. The first book available on the subject to be illustrated using TEM images, ULSI Semiconductor Technology Atlas is logically divided into four parts: * Part I includes basic introductions to the ULSI process, device construction analysis, and TEM sample preparation * Part II focuses on key ULSI modules--ion implantation and defects, dielectrics and isolation structures, silicides/salicides, and metallization * Part III examines integrated devices, including complete planar DRAM, stacked cell DRAM, and trench cell DRAM, as well as SRAM as examples for process integration and development * Part IV emphasizes special applications, including TEM in advanced failure analysis, TEM in advanced packaging development and UBM (Under Bump Metallization) studies, and high-resolution TEM in microelectronics This innovative guide also provides engineers and managers in the microelectronics industry, as well as graduate students, with: * More than 1,100 TEM images to illustrate the science of ULSI * A historical introduction to the technology as well as coverage of the evolution of basic ULSI process problems and issues * Discussion of TEM in other advanced microelectronics devices and materials, such as flash memories, SOI, SiGe devices, MEMS, and CD-ROMs




Rapid Thermal and Other Short-time Processing Technologies II


Book Description

"Electronics, Dielectric Science and Technology, and High Temperature Materials Divisions."




Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications


Book Description

In Advanced ULSI interconnects – fundamentals and applications we bring a comprehensive description of copper-based interconnect technology for ultra-lar- scale integration (ULSI) technology for integrated circuit (IC) application. In- grated circuit technology is the base for all modern electronics systems. You can ?nd electronics systems today everywhere: from toys and home appliances to a- planes and space shuttles. Electronics systems form the hardware that together with software are the bases of the modern information society. The rapid growth and vast exploitation of modern electronics system create a strong demand for new and improved electronic circuits as demonstrated by the amazing progress in the ?eld of ULSI technology. This progress is well described by the famous “Moore’s law” which states, in its most general form, that all the metrics that describe integrated circuit performance (e. g. , speed, number of devices, chip area) improve expon- tially as a function of time. For example, the number of components per chip d- bles every 18 months and the critical dimension on a chip has shrunk by 50% every 2 years on average in the last 30 years. This rapid growth in integrated circuits te- nology results in highly complex integrated circuits with an increasing number of interconnects on chips and between the chip and its package. The complexity of the interconnect network on chips involves an increasing number of metal lines per interconnect level, more interconnect levels, and at the same time a reduction in the interconnect line critical dimensions.




Silicon Components and Processes Self Study


Book Description

This book is one of a series of five volumes forming an integrated, self-study course on silicon device physics, modes of operation, characterization, and fabrication. The series is based on many years of the author’s experience in academic and industrial teaching of semiconductors. The books are suitable for both class-teaching and self-study. The authors have designed the content to enable readers to be introduced gradually to semiconductors, in particular silicon components. The presentation includes many illustrations, practical examples, review questions and problems at the end of each chapter. Answers to review questions and solutions to problems will be provided for “self-check”. Complements courses covering silicon device physics, mode of components, characterization, and fabrication; Enables comprehensive, self-study in semiconductors, aimed at practicing engineers or university students; Includes many illustrations, practical examples, review questions and problems at the end of each chapter.







Diffusion and Diffusional Phase Transformations in Alloys


Book Description

Selected, peer reviewed papers from the 4-TH INTERNATIONAL WORKSHOP DIFFUSION AND DIFFUSIONAL PHASE TRANSFORMATIONS IN ALLOYS, DIFTRANS- 2007, 16-21 July 2007, Sofiyivka (Uman’), Cherkasy region, Ukraine