Ultrafast Dynamics and Interfacial Structural Orientation Investigated with Multidimensional Vibrational Spectroscopy


Book Description

In this thesis, two multidimensional spectroscopic methods--two-dimensional infrared (2D IR) spectroscopy and heterodyne 2D sum frequency generation (HD 2D SFG) spectroscopy--are applied to investigate ultrafast chemical exchange of organometallics in bulk solution and structural orientation of surface catalysts at interface, respectively. 2D IR spectroscopy is used to study the ultrafast chemical exchange of two organometallics compound ( Ru(S2C2(CF3)2)(CO)(PPh3)2 and Co(CNArMes2)4 ) occurring on the picosecond time scale. Combined with DFT simulation results, 2D IR provides direct evidence of the existence of various isomers. For the five-coordinate Ru complex, one isomers that serves as the intermediate of the axial-equatorial exchange was observed for the first time. Furthermore, our 2D IR works find the kinetic barriers of dynamic exchange between multiple isomers surprisingly low, consider both of the transition metal complexes under study have relatively large ligands. The low kinetic barriers are attributed to the small core-angle movement involved in the chemical exchange. 2D IR is also applied to W(CO)6/dual cavity system to observe ultrafast intercavity nonlinear polariton interactions. Combined with a newly developed theory model, we show that the nonlinear interaction is realized by shared molecular anharmonicities among cavity modes, e.g. through mode delocalization, some molecules (with anharmonicity) are coupled by cavity modes adjacent to each other. HD 2D SFG spectroscopy is used to study a model CO2 reduction catalyst, Re(diCNbpy)(CO)3Cl, as a monolayer on a gold surface. We show that short-range interactions with the surface can cause substantial line-shape differences between vibrational bands from the same molecules. This interaction can be explained as the result of couplings between CO vibrational modes of the catalyst molecules and the image dipoles on gold surface, which are sensitive to the relative distance between the molecule and the surface. Thus, by analysis of HD 2D SFG lineshape differences and polarization dependences of IR spectra, the ensemble-averaged orientation of the molecules on the surface can be determined unambiguously. The high sensitivity of HD 2D SFG spectra to short-range interactions can be applied to many other adsorbate-substrate interactions and therefore serve as a unique tool to determine adsorbate orientations on surfaces. Meanwhile, surface molecules of the monolayers can adopt conformations with many different orientations. Thus, it is necessary to describe the orientations of surface molecular monolayers using both mean tilt angle and orientational distribution, which together we refer to as orientation heterogeneity. Orientation heterogeneity is difficult to measure. In most cases, in order to calculate the mean tilt angle, it is assumed that the orientational distribution is narrow. This assumption causes ambiguities in determining the mean tilt angle and loss of orientational distribution information, which is known as the "magic angle" challenge. Using HD 2D SFG spectroscopy, we report a novel method to solve the "magic angle" challenge, by simultaneously measuring mean tilt angle and orientational distribution of molecular monolayers. Although applied to a specific system, this method is a general way to determine the orientation heterogeneity of an ensemble-averaged molecular interface.




Coherent Multidimensional Spectroscopy


Book Description

This book will fulfill the needs of time-domain spectroscopists who wish to deepen their understanding of both the theoretical and experimental features of this cutting-edge spectroscopy technique. Coherent Multidimensional Spectroscopy (CMDS) is a state-of-the-art technique with applications in a variety of subjects like chemistry, molecular physics, biochemistry, biophysics, and material science. Due to dramatic advancements of ultrafast laser technologies, diverse multidimensional spectroscopic methods utilizing combinations of THz, IR, visible, UV, and X-ray radiation sources have been developed and used to study real time dynamics of small molecules in solutions, proteins and nucleic acids in condensed phases and membranes, single and multiple excitons in functional materials like semiconductors, quantum dots, and solar cells, photo-excited states in light-harvesting complexes, ions in battery electrolytes, electronic and conformational changes in charge or proton transfer systems, and excess electrons and protons in water and biological systems.




Ultrafast Dynamics In Molecules, Nanostructures And Interfaces - Selected Lectures Presented At Symposium On Ultrafast Dynamics Of The 7th International Conference On Materials For Advanced Technologies


Book Description

Primary events in natural systems or devices occur on extremely short time scales, and yet determine in many cases the final performance or output. For this reason research in ultrafast science is of primary importance and impact in both fundamental research as well as its applications. This book reviews the advances in the field, addressing timely and open questions such as the role of quantum coherence in biology, the role of excess energy in electron injection at photovoltaic interfaces or the dynamics in quantum confined structures (e.g. multi carrier generation). The approach is that of a monograph, with a broad tutorial introduction and an overview of the recent results. This volume includes selected lectures presented at Symposium on Ultrafast Dynamics of the 7th International Conference on Materials for Advanced Technologies.




Molecular and Laser Spectroscopy


Book Description

Molecular and Laser Spectroscopy, Advances and Applications: Volume 2 gives students and researchers an up-to-date understanding of the fast-developing area of molecular and laser spectroscopy. This book covers basic principles and advances in several conventional as well as new and upcoming areas of molecular and laser spectroscopy, such as a wide range of applications in medical science, material science, standoff detection, defence and security, chemicals and pharmaceuticals, and environmental science. It covers the latest advancements, both in terms of techniques and applications, and highlights future projections. Editors V.P. Gupta and Yukihiro Ozaki have brought together eminent scientists in different areas of spectroscopy to develop specialized topics in conventional molecular spectroscopy (Cavity ringdown, Matrix Isolation, Intense THz, Far- and Deep- UV, Optogalvanic ), linear and nonlinear laser spectroscopy (Rayleigh & Raman Scattering), Ultrafast Time-resolved spectroscopy, and medical applications of molecular spectroscopy. and advanced material found in research articles. This new volume expands upon the topics covered in the first volume for scientists to learn the latest techniques and put them to practical use in their work. - Covers several areas of spectroscopy research and expands upon topics covered in the first volume - Includes exhaustive lists of research articles, reviews, and books at the end of each chapter to further learning objectives - Uses illustrative examples of the varied applications to provide a practical guide to those interested in using molecular and laser spectroscopy tools in their research




Ultrafast Infrared Vibrational Spectroscopy


Book Description

The advent of laser-based sources of ultrafast infrared pulses has extended the study of very fast molecular dynamics to the observation of processes manifested through their effects on the vibrations of molecules. In addition, non-linear infrared spectroscopic techniques make it possible to examine intra- and intermolecular interactions and how such interactions evolve on very fast time scales, but also in some instances on very slow time scales. Ultrafast Infrared Vibrational Spectroscopy is an advanced overview of the field of ultrafast infrared vibrational spectroscopy based on the scientific research of the leading figures in the field. The book discusses experimental and theoretical topics reflecting the latest accomplishments and understanding of ultrafast infrared vibrational spectroscopy. Each chapter provides background, details of methods, and explication of a topic of current research interest. Experimental and theoretical studies cover topics as diverse as the dynamics of water and the dynamics and structure of biological molecules. Methods covered include vibrational echo chemical exchange spectroscopy, IR-Raman spectroscopy, time resolved sum frequency generation, and 2D IR spectroscopy. Edited by a recognized leader in the field and with contributions from top researchers, including experimentalists and theoreticians, this book presents the latest research methods and results. It will serve as an excellent resource for those new to the field, experts in the field, and individuals who want to gain an understanding of particular methods and research topics.




Physical Chemistry of Gas-Liquid Interfaces


Book Description

Physical Chemistry of Gas-Liquid Interfaces, the first volume in the Developments in Physical & Theoretical Chemistry series, addresses the physical chemistry of gas transport and reactions across liquid surfaces. Gas–liquid interfaces are all around us, especially within atmospheric systems such as sea spry aerosols, cloud droplets, and the surface of the ocean. Because the reaction environment at liquid surfaces is completely unlike bulk gas or bulk liquid, chemists must readjust their conceptual framework when entering this field. This book provides the necessary background in thermodynamics and computational and experimental techniques for scientists to obtain a thorough understanding of the physical chemistry of liquid surfaces in complex, real-world environments. - 2019 PROSE Awards - Winner: Category: Chemistry and Physics: Association of American Publishers - Provides an interdisciplinary view of the chemical dynamics of liquid surfaces, making the content of specific use to physical chemists and atmospheric scientists - Features 100 figures and illustrations to underscore key concepts and aid in retention for young scientists in industry and graduate students in the classroom - Helps scientists who are transitioning to this field by offering the appropriate thermodynamic background and surveying the current state of research







Encyclopedia of Modern Optics


Book Description

The Encyclopedia of Modern Optics, Second Edition, Five Volume Set provides a wide-ranging overview of the field, comprising authoritative reference articles for undergraduate and postgraduate students and those researching outside their area of expertise. Topics covered include classical and quantum optics, lasers, optical fibers and optical fiber systems, optical materials and light-emitting diodes (LEDs). Articles cover all subfields of optical physics and engineering, such as electro-optical design of modulators and detectors. This update contains contributions from international experts who discuss topics such as nano-photonics and plasmonics, optical interconnects, photonic crystals and 2D materials, such as graphene or holy fibers. Other topics of note include solar energy, high efficiency LED’s and their use in illumination, orbital angular momentum, quantum optics and information, metamaterials and transformation optics, high power fiber and UV fiber lasers, random lasers and bio-imaging. Addresses recent developments in the field and integrates concepts from fundamental physics with applications for manufacturing and engineering/design Provides a broad and interdisciplinary coverage of specialist areas Ensures that the material is appropriate for new researchers and those working in a new sub-field, as well as those in industry Thematically arranged and alphabetically indexed, with cross-references added to facilitate ease-of-use




Femtochemistry and Femtobiology


Book Description

This book contains important contributions from top international scientists on the-state-of-the-art of femtochemistry and femtobiology at the beginning of the new millennium. It consists of reviews and papers on ultrafast dynamics in molecular science.The coverage of topics highlights several important features of molecular science from the viewpoint of structure (space domain) and dynamics (time domain). First of all, the book presents the latest developments, such as experimental techniques for understanding ultrafast processes in gas, condensed and complex systems, including biological molecules, surfaces and nanostructures. At the same time it stresses the different ways to control the rates and pathways of reactive events in chemistry and biology. Particular emphasis is given to biological processes as an area where femtodynamics is becoming very useful for resolving the structural dynamics from techniques such as electron diffraction, and X-ray and IR spectroscopy. Finally, the latest developments in quantum control (in both theory and experiment) and the experimental pulse-shaping techniques are described.




Ionic Liquids II


Book Description

​The series Topics in Current Chemistry Collections presents critical reviews from the journal Topics in Current Chemistry organized in topical volumes. The scope of coverage is all areas of chemical science including the interfaces with related disciplines such as biology, medicine and materials science. The goal of each thematic volume is to give the non-specialist reader, whether in academia or industry, a comprehensive insight into an area where new research is emerging which is of interest to a larger scientific audience. Each review within the volume critically surveys one aspect of that topic and places it within the context of the volume as a whole. The most significant developments of the last 5 to 10 years are presented using selected examples to illustrate the principles discussed. The coverage is not intended to be an exhaustive summary of the field or include large quantities of data, but should rather be conceptual, concentrating on the methodological thinking that will allow the non-specialist reader to understand the information presented. Contributions also offer an outlook on potential future developments in the field. The chapters “Ionic Liquid–Liquid Chromatography: A New General Purpose Separation Methodology”, “Proteins in Ionic Liquids: Current Status of Experiments and Simulations”, “Lewis Acidic Ionic Liquids” and "Quantum Chemical Modeling of Hydrogen Bonding in Ionic Liquids" are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.