Ultrafast Supercontinuum Generation in Transparent Solid-State Media


Book Description

This book presents the underlying physical picture and an overview of the state of the art of femtosecond supercontinuum generation in various transparent solid-state media, ranging from wide-bandgap dielectrics to semiconductor materials, and across various parts of the optical spectrum, from the ultraviolet to the mid-infrared. A particular emphasis is placed on the most recent experimental developments: multioctave supercontinuum generation with pumping in the mid-infrared spectral range, spectral control, power and energy scaling of broadband radiation and the development of simple, flexible and robust pulse compression techniques, which deliver few optical cycle pulses and which could be readily implemented in a variety of modern ultrafast laser systems. The expected audience includes graduate students, professionals and scientists working in the field of laser-matter interactions and ultrafast nonlinear optics.







Self-Organized Surface Structures with Ultrafast White-Light


Book Description

Sebastian Uhlig presents the first experimental investigation of self-organized surface structures (LIPSS) generated by ablation from different (semiconductor and metallic) targets with an ultrafast white-light continuum (WLC) spreading in wavelength from 400-750 nm. The main goal is to study the possibility of LIPSS formation upon irradiation with an incoherent and polychromatic light source (e.g. the WLC) in order to discriminate between the two debated formation scenarios. The generation of a suitable WLC in terms of sufficient white-light pulse energy, broad spectral bandwidth, and low spatial coherence for the LIPSS generation, as well as the characterization of this WLC are additional important objectives of this work.




Ultrashort Pulse Lasers and Ultrafast Phenomena


Book Description

This book describes the basic physical principles of techniques to generate and ultrashort pulse lasers and applications to ultrafast spectroscopy of various materials covering chemical molecular compounds, solid-state materials, exotic novel materials including topological materials, biological molecules and bio- and synthetic polymers. It introduces non-linear optics which provides the basics of generation and measurement of pulses and application examples of ultrafast spectroscopy to solid state physics. Also it provide not only material properties but also material processing procedures. The book describes also details of the world shortest visible laser and DUV lasers developed by the author’s group. It is composed of the following 12 Sections: The special features of this book is that it is written by a single author with a few collaborators in a systematic way. Hence it provides a comprehensive and systematic description of the research field of ultrashort pulse lasers and ultrafast spectroscopy. Generation of ultrashort pulses in deep ultraviolet to near infrared Generation of ultrashort pulses in terahertz Carrier envelope phase (CEP) Simple NLO processes with a few colors Multi-color involved NLO processes Multi-color ultrashort pulse generation NLO materials NLO processes in time-resolved spectroscopy Low dimension materials Conductors and superconductors Chemical reactions and material processing Photobiological reactions




Laser Physics


Book Description




Laser Focus World


Book Description

"Global electro-optic technology and markets." "Photonics technologies & solutions for technical professionals worldwide."




A New Generation of High-Power, Waveform Controlled, Few-Cycle Light Sources


Book Description

This thesis presents first successful experiments to carrier-envelope-phase stabilize a high-power mode-locked thin-disk oscillator and to compress the pulses emitted from this laser to durations of only a few-optical cycles. Moreover, the monograph introduces several methods to achieve power-scalability of compression and stabilization techniques. All experimental approaches are compared in detail and may serve as a guideline for developing high-power waveform controlled, few-cycle light sources which offer tremendous potential to exploit extreme nonlinear optical effects at unprecedentedly high repetition rates and to establish table-top infrared light sources with a unique combination of brilliance and bandwidth. As an example, the realization of a multi-Watt, multi-octave spanning, mid-infrared femtosecond source is described. The thesis starts with a basic introduction to the field of ultrafast laser oscillators. It subsequently presents additional details of previously published research results and establishes a connection between them. It therefore addresses both newcomers to, and experts in the field of high-power ultrafast laser development.




Laser-Induced Damage in Optical Materials


Book Description

Dedicated to users and developers of high-powered systems, Laser-Induced Damage in Optical Materials focuses on the research field of laser-induced damage and explores the significant and steady growth of applications for high-power lasers in the academic, industrial, and military arenas. Written by renowned experts in the field, this book concentr




The Supercontinuum Laser Source


Book Description

This new edition of a classic in the field has been expanded and enriched with new content and updated references. The book covers the fundamental principles and surveys research of current thinkers and experts in the field with updated references of the key breakthroughs over the past decade and a half.




Ultrashort Laser Pulse Phenomena


Book Description

Ultrashort Laser Pulse Phenomena, Second Edition serves as an introduction to the phenomena of ultra short laser pulses and describes how this technology can be used to examine problems in areas such as electromagnetism, optics, and quantum mechanics. Ultrashort Laser Pulse Phenomena combines theoretical backgrounds and experimental techniques and will serve as a manual on designing and constructing femtosecond ("faster than electronics") systems or experiments from scratch. Beyond the simple optical system, the various sources of ultrashort pulses are presented, again with emphasis on the basic concepts and how they apply to the design of particular sources (dye lasers, solid state lasers, semiconductor lasers, fiber lasers, and sources based on frequency conversion). - Provides an easy to follow guide through "faster than electronics" probing and detection methods - THE manual on designing and constructing femtosecond systems and experiments - Discusses essential technology for applications in micro-machining, femtochemistry, and medical imaging