Ultrafiltration Membranes and Applications


Book Description

This book is a record of a symposium, "Ultrafiltration Membranes and Applications," which was held at the l78th National Meeting of the American Chemical Society in Washington, D.C., September 11-13, 1979. In organlzlng these sessions, I hoped to provide a comprehensive survey of the current state of ultrafiltration theory, the most recent advances in membrane technology, and a thorough treatment of existing applications and future directions for ultrafiltration. For me, the symposium was an outstanding success. It was a truly international forum with stimulating presentations and an enthusiastic audience. I hope that some of this spirit has spilled over into this volume, which is intended to reach a much wider audience. I am indebted to the Division of Colloid and Surface Chemistry of the American Chemical Society for their sponsorship. ANTHONY R. COOPER Palo Alto, California }larch, 1980 vii CONTENTS PART I. FUNDMfENTALS Fifteen Years of Ultrafiltration: Problems and Future Promises of an Adolescent Technology . . 1 Alan S. Michaels Production, Specification, and Some Transport Characteristics of Cellulose Acetate Ultrafil tration Membranes for Aqueous Feed Solutions 21 S. Sourirajan, Takeshi Matsuura Fu-Hung Hsieh and Gary R. Gildert Chemical and Morphological Effects of Solute Diffusion Through Block Copolymer Membranes 45 Yatin B. Thakore, Dien-Feng Shieh and Donald J. Lyman Practical Aspects in the Development of a Polymer Matrix for Ultrafiltration. 57 Israel Cabasso Permeability Parameters of a Novel Polyamide Membrane. ... - ...




Membrane Technology and Applications


Book Description

Table of Contents Preface Acknowledgments for the first edition Acknowledgments for the second edition 1 Overview of Membrane Science and Technology 1 2 Membrane Transport Theory 15 3 Membranes and Modules 89 4 Concentration Polarization 161 5 Reverse Osmosis 191 6 Ultrafiltration 237 7 Microfiltration 275 8 Gas Separation 301 9 Pervaporation 355 10 Ion Exchange Membrane Processes - Electrodialysis 393 11 Carrier Facilitated Transport 425 12 Medical Applications of Membranes 465 13 Other Membrane Processes 491 Appendix 523 Index 535.




Microfiltration and Ultrafiltration


Book Description

Integrates knowledge on microfiltration and ultrification, membrane chemistry, and characterization methods with the engineering and economic aspects of device performance, device and module design, processes, and applications. The text provides a discussion of membrane fundamentals and an analytical framework for designing and developing new filtrations systems for a broad range of technologically important functions. It offers information on membrane liquid precursors, fractal and stochastic pore space analysis, novel and advanced module designs, and original process design calculations.




Ultrafiltration for Bioprocessing


Book Description

Ultrafiltration for Bioprocessing is key reading for all those involved in the biotechnology and biopharmaceutical areas. Written by a leading worker in the area, it includes many practical applications and case studies in the key process of ultrafiltration (UF), which is used in almost every bioprocess. - Focuses on ultrafiltration for biopharmaceuticals—other books look at general ultrafiltration or general biopharmaceuticals - A mix of theory and practical applications—other books tend to be more theory-oriented - Addresses the main issues encountered in development and scale-up through recommendations and case studies




Advanced Membrane Technology and Applications


Book Description

Advanced membranes-from fundamentals and membrane chemistry to manufacturing and applications A hands-on reference for practicing professionals, Advanced Membrane Technology and Applications covers the fundamental principles and theories of separation and purification by membranes, the important membrane processes and systems, and major industrial applications. It goes far beyond the basics to address the formulation and industrial manufacture of membranes and applications. This practical guide: Includes coverage of all the major types of membranes: ultrafiltration; microfiltration; nanofiltration; reverse osmosis (including the recent high-flux and low-pressure membranes and anti-fouling membranes); membranes for gas separations; and membranes for fuel cell uses Addresses six major topics: membranes and applications in water and wastewater; membranes for biotechnology and chemical/biomedical applications; gas separations; membrane contractors and reactors; environmental and energy applications; and membrane materials and characterization Includes discussions of important strategic issues and the future of membrane technology With chapters contributed by leading experts in their specific areas and a practical focus, this is the definitive reference for professionals in industrial manufacturing and separations and research and development; practitioners in the manufacture and applications of membranes; scientists in water treatment, pharmaceutical, food, and fuel cell processing industries; process engineers; and others. It is also an excellent resource for researchers in industry and academia and graduate students taking courses in separations and membranes and related fields.




Membrane Processing


Book Description

This book extensively reviews the dairy, beverage and distilled spirits applications of membrane processing techniques. The four main techniques of membrane filtration are covered: microfiltration, ultrafiltration, nanofiltration and reverse osmosis. The book is divided into four informal sections. The first part provides an overview of membrane technology, including the main scientific principles; the major membrane types and their construction; cleaning and disinfection; and historical development. The second part focuses on dairy applications including liquid and fermented milks; cheese; whey; and milk concentrates. The third part of the book addresses beverage applications including mineral waters, fruit juices and sports drinks, and the final part looks at membrane filtration in the production of beers, wines and spirits.




Membrane Separation Principles and Applications


Book Description

Membrane Separation Principles and Applications: From Material Selection to Mechanisms and Industrial Uses, the latest volume in the Handbooks in Separation Science series, is the first single resource to explore all aspects of this rapidly growing area of study. Membrane technology is now accepted as one of the most effective tools for separation and purification, primarily due to its simple operation. The result has been a proliferation of studies on this topic; however, the relationships between fundamental knowledge and applications are rarely discussed. This book acts as a guideline for those who are interested in exploring membranes at a more progressive level. Covering methods of pressure driving force, partial pressure driving force, concentration driving force, electrical potential driving force, hybrid processes, and more, this volume is more complete than any other known resource on membrane separations. - Covers membrane material selection, membrane fabrication, membrane characterization, separation mechanisms and applications in each chapter - Authored by contributors who are internationally recognized as experts in their respective fields - Organized by the driving force behind each type of membrane separation—a unique approach that more clearly links fundamental principles with their dominant applications




Membranes for Water Treatment


Book Description

This ready reference on Membrane Technologies for Water Treatment, is an invaluable source detailing sustainable, emerging processes, to provide clean, energy saving and cost effective alternatives to conventional processes. The editors are internationally renowned leaders in the field, who have put together a first-class team of authors from academia and industry to present a highly approach to the subject. The book is an instrumental tool for Process Engineers, Chemical Engineers, Process Control Technicians, Water Chemists, Environmental Chemists, Materials Scientists and Patent Lawyers.




Separation and Purification Technologies in Biorefineries


Book Description

Separation and purification processes play a critical role in biorefineries and their optimal selection, design and operation to maximise product yields and improve overall process efficiency. Separations and purifications are necessary for upstream processes as well as in maximising and improving product recovery in downstream processes. These processes account for a significant fraction of the total capital and operating costs and also are highly energy intensive. Consequently, a better understanding of separation and purification processes, current and possible alternative and novel advanced methods is essential for achieving the overall techno-economic feasibility and commercial success of sustainable biorefineries. This book presents a comprehensive overview focused specifically on the present state, future challenges and opportunities for separation and purification methods and technologies in biorefineries. Topics covered include: Equilibrium Separations: Distillation, liquid-liquid extraction and supercritical fluid extraction. Affinity-Based Separations: Adsorption, ion exchange, and simulated moving bed technologies. Membrane Based Separations: Microfiltration, ultrafiltration and diafiltration, nanofiltration, membrane pervaporation, and membrane distillation. Solid-liquid Separations: Conventional filtration and solid-liquid extraction. Hybrid/Integrated Reaction-Separation Systems: Membrane bioreactors, extractive fermentation, reactive distillation and reactive absorption. For each of these processes, the fundamental principles and design aspects are presented, followed by a detailed discussion and specific examples of applications in biorefineries. Each chapter also considers the market needs, industrial challenges, future opportunities, and economic importance of the separation and purification methods. The book concludes with a series of detailed case studies including cellulosic bioethanol production, extraction of algae oil from microalgae, and production of biopolymers. Separation and Purification Technologies in Biorefineries is an essential resource for scientists and engineers, as well as researchers and academics working in the broader conventional and emerging bio-based products industry, including biomaterials, biochemicals, biofuels and bioenergy.




Nanofiltration, 2 Volume Set


Book Description

An updated guide to the growing field of nanofiltration including fundamental principles, important industrial applications as well as novel materials With contributions from an international panel of experts, the revised second edition of Nanofiltration contains a comprehensive overview of this growing field. The book covers the basic principles of nanofiltration including the design and characterizations of nanofiltration membranes. The expert contributors highlight the broad ranges of industrial applications including water treatment, food, pulp and paper, and textiles. The book explores photocatalytic nanofiltration reactors, organic solvent nanofiltration, as well as nanofiltration in metal and acid recovery. In addition, information on the most recent developments in the field are examined including nanofiltration retentate treatment and renewable energy-powered nanofiltration. The authors also consider the future of nanofiltration materials such as carbon- as well as polymer-based materials. This important book: Explores the fast growing field of the membrane process of nanofiltration Examines the rapidly expanding industrial sector's use of membranes for water purification Covers the most important industrial applications with a strong focus on water treatment Contains a section on new membrane materials, including carbon-based and polymer-based materials, as well as information on artificial ion and water channels as biomimetic membranes Written for scientists and engineers in the fields of chemistry, environment, food and materials, the second edition of Nanofiltration provides a comprehensive overview of the field, outlines the principles of the technology, explores the industrial applications, and discusses new materials.