Ultrafine-Grained Metals


Book Description

This book is a printed edition of the Special Issue "Ultrafine-grained Metals" that was published in Metals




Ultra-Fine Grained Steels


Book Description

This book discusses results of the New Generation Iron and Steel Materials research project funded over the last ten years. It thoroughly describes theoretical achievements in ultra-fine grain steel and its refinement. It also discusses progress in related areas of engineering and technology. The author has been engaged in the research of new generation structural materials for the last twelve years being Chief Scientist of three national research programs in China.




Ultrafine Grained Materials II


Book Description

Proceedings of a symposium sponsored by the Shaping and Forming Committee of the Materials Processing and Manufacturing Division (MPMD) and the Mechanical Behavior Committee (Jt. SMD/ASM-MSCTS) of the Structural Materials Division (SMD) of TMS (The Minerals, Metals & Materials Society) and held during the 2002 TMS Annual Meeting in Seattle, Washington February 17-21,2002.




Ultrafine-Grained Metals


Book Description

Annotation Ultrafine-grained metallic materials produced by severe plastic deformation methods are at the cutting edge of modern materials science. UFG-metals exhibit outstanding properties which make them very interesting for structural or functional engineering applications. Fifteen articles in this special issue address a broad variety of topics: New developments in severe plastic deformation techniques, advances in modeling and simulation of the severe plastic deformation processes, mechanical properties under monotonic and cyclic loading of homogenous and graded UFG structures, dominating deformation mechanisms in UFG materials, advances and strategies for high conductivity UFG-materials, correlation between severe plastic deformation parameters and resulting materials properties and peculiarities in the corrosion behavior of UFG materials. The book covers latest results on ultrafine-grained titanium, aluminum and copper alloys and on UFG iron and steels and thus provides a deep insight to current research activities in the field of ultrafine-grained metals.







Ultrafine-grain Metals


Book Description

Focuses on he properties and processing of metallic materials through the realization of grain sizes down to the sub-micron range.




Advanced Materials


Book Description

This book provides a thorough introduction to the essential topics in modern materials science. It brings together the spectrum of materials science topics, spanning inorganic and organic materials, nanomaterials, biomaterials, and alloys within a single cohesive and comprehensive resource. Synthesis and processing techniques, structural and crystallographic configurations, properties, classifications, process mechanisms, applications, and related numerical problems are discussed in each chapter. End-of-chapter summaries and problems are included to deepen and reinforce the reader's comprehension. Provides a cohesive and comprehensive reference on a wide range of materials and processes in modern materials science; Presents material in an engaging manner to encourage innovative practices and perspectives; Includes chapter summaries and problems at the end of every chapter for reinforcement of concepts.




Superplasticity and Grain Boundaries in Ultrafine-Grained Materials


Book Description

Superplasticity and Grain Boundaries in Ultrafine-Grained Materials, Second Edition, provides cutting-edge modeling solutions surrounding the role of grain boundaries in processes such as grain boundary diffusion, relaxation and grain growth. In addition, the book's authors explore the formation and evolution of the microstructure, texture and ensembles of grain boundaries in materials produced by severe plastic deformation. This updated edition, written by leading experts in the field, has been revised to include new chapters on the basics of nanostructure processing, the influence of deformation mechanisms on grain refinement, processing techniques for ultrafine-grained and nanostructured materials, and much more. Provides practical applications and methods for the proper implementation of models, allowing for more effective complex metal forming processes Features new chapters on the microstructure, mechanical behavior and functional properties of HCP metals, processing ultrafine-grained and nanostructured materials, and more Covers experimental assessment and computational modeling techniques for adiabatic heating and saturation of grain refinement during SPD of metals and alloys




Bulk Nanostructured Materials


Book Description

This book presents the most recent results in the area of bulk nanostructured materials and new trends in their severe plastic deformation (SPD) processing, where these techniques are now emerging from the domain of laboratory-scale research into the commercial production of various bulk nanomaterials. Special emphasis is placed on an analysis of the effect of nanostructures in materials fabricated by SPD on mechanical properties (strength and ductility, fatigue strength and life, superplasticity) and functional behavior (shape memory effects, magnetic and electric properties), as well as the numerous examples of their innovative applications. There is a high innovation potential for industrial applications of bulk nanomaterials for structural use (materials with extreme strength) as well as for functional applications such as nanomagnets, materials for hydrogen storage, thermoelectric materials, superconductors, catalysts, and biomedical implants.




Severe Plastic Deformation


Book Description

Severe Plastic Deformation: Methods, Processing and Properties examines all severe plastic deformation techniques developed over the past two decades, exploring the appropriate severe plastic deformation method for a particular case. The book offers an overview of these methods, introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples, reviews effective parameters to make a severe plastic deformation method better, from property (mechanical) and processing (cost, time, load, etc.) viewpoints, discusses mechanical, physical and chemical properties of UFG and NS metals, and concludes with various applications for these methods. Over the last several decades, a large number of severe plastic deformation methods have been developed for processing a wide array of metals for superior properties, making this a timely resource. Collects all severe plastic deformation methods in a unique reference Compares severe plastic deformation methods from several viewpoints, including processing and final property Classifies severe plastic deformation methods based on the sample shape and mechanics, as well as the properties achieved in the processed metal Introduces ultrafine-grained and nano-grained metals and methods for various bulk, sheet, tubular and large size samples