Ultrasonic and Electromagnetic NDE for Structure and Material Characterization


Book Description

Most books on nondestructive evaluation (NDE) focus either on the theoretical background or on advanced applications. Bridging the gap between the two, Ultrasonic and Electromagnetic NDE for Structure and Material Characterization: Engineering and Biomedical Applications brings together the principles, equations, and applications of ultrasonic and




Materials Characterization Using Nondestructive Evaluation (NDE) Methods


Book Description

Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress. - Gives an overview of established and new NDT techniques, including scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques - Reviews the determination of microstructural and mechanical properties - Focuses on materials used in the automotive, aerospace, power plants, and infrastructure construction industries - Serves as a highly desirable resource for both long-term monitoring and short-term assessment of materials




Nonlinear Ultrasonic and Vibro-Acoustical Techniques for Nondestructive Evaluation


Book Description

This multi-contributed volume provides a practical, applications-focused introduction to nonlinear acoustical techniques for nondestructive evaluation. Compared to linear techniques, nonlinear acoustical/ultrasonic techniques are much more sensitive to micro-cracks and other types of small distributed damages. Most materials and structures exhibit nonlinear behavior due to the formation of dislocation and micro-cracks from fatigue or other types of repetitive loadings well before detectable macro-cracks are formed. Nondestructive evaluation (NDE) tools that have been developed based on nonlinear acoustical techniques are capable of providing early warnings about the possibility of structural failure before detectable macro-cracks are formed. This book presents the full range of nonlinear acoustical techniques used today for NDE. The expert chapters cover both theoretical and experimental aspects, but always with an eye towards applications. Unlike other titles currently available, which treat nonlinearity as a physics problem and focus on different analytical derivations, the present volume emphasizes NDE applications over detailed analytical derivations. The introductory chapter presents the fundamentals in a manner accessible to anyone with an undergraduate degree in Engineering or Physics and equips the reader with all of the necessary background to understand the remaining chapters. This self-contained volume will be a valuable reference to graduate students through practising researchers in Engineering, Materials Science, and Physics. Represents the first book on nonlinear acoustical techniques for NDE applications Emphasizes applications of nonlinear acoustical techniques Presents the fundamental physics and mathematics behind nonlinear acoustical phenomenon in a simple, easily understood manner Covers a variety of popular NDE techniques based on nonlinear acoustics in a single volume




Ultrasonic Nondestructive Evaluation Systems


Book Description

This book deals with a number of fundamental issues related to the practical implementation of ultrasonic NDT techniques in an industrial environment. The book discusses advanced academic research results and their application to industrial procedures. The text covers the choice and generation of the signals energizing the system to probe position optimization, from quality assessment evaluation to tomographic inversion. With a focus to deepen a number of fundamental aspects involved in the specific objective of designing and developing an ultrasonic imaging system for nondestructive testing, aimed to automatically classify the entire production of an industrial production line, targeted to the field of precision mechanics. The contents of this book is the result of the common effort of six University Research Groups that focused their research activities for two years on this specific objective, working in direct conjunction with primary industrial firms, in a research project funded by the Italian government as a Strategic Research Project.




Ultrasonic And Advanced Methods For Nondestructive Testing And Material Characterization


Book Description

Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.




Ultrasonic and Advanced Methods for Nondestructive Testing and Material Characterization


Book Description

Ultrasonic methods have been very popular in nondestructive testing and characterization of materials. This book deals with both industrial ultrasound and medical ultrasound. The advantages of ultrasound include flexibility, low cost, in-line operation, and providing data in both signal and image formats for further analysis. The book devotes 11 chapters to ultrasonic methods. However, ultrasonic methods can be much less effective with some applications. So the book also has 14 chapters catering to other or advanced methods for nondestructive testing or material characterization. Topics like structural health monitoring, Terahertz methods, X-ray and thermography methods are presented. Besides different sensors for nondestructive testing, the book places much emphasis on signal/image processing and pattern recognition of the signals acquired.




Sensor Technologies for Civil Infrastructures


Book Description

Sensor Technologies for Civil Infrastructure, Volume 2: Applications in Structural Health Monitoring, Second Edition, provides an overview of sensor applications and a new section on future and emerging technologies. Part one is made up of case studies in assessing and monitoring specific structures such as bridges, towers, buildings, dams, tunnels, pipelines, and roads. The new edition also includes sensing solutions for assessing and monitoring of naval systems. Part two reviews emerging technologies for sensing and data analysis including diagnostic solutions for assessing and monitoring sensors, unmanned aerial systems, and UAV application in post-hazard event reconnaissance and site assessment. - Includes case studies in assessing structures such as bridges, buildings, super-tall towers, dams, tunnels, wind turbines, railroad tracks, nuclear power plants, offshore structures, naval systems, levees, and pipelines - Reviews future and emerging technologies and techniques including unmanned aerial systems, LIDAR, and ultrasonic and infrared sensing - Describes latest emerging techniques in data analysis such as diagnostic solutions for assessing and monitoring sensors and big data analysis




Modeling and Measurement Methods for Acoustic Waves and for Acoustic Microdevices


Book Description

Acoustics is a mature field which enjoys a never ending youth. New developments are induced by either the search for a better understanding, or by technological innovations. Micro-fabrication techniques introduced a whole new class of microdevices, which exploit acoustic waves for various tasks, and in particular for information processing and for sensing purposes. Performance improvements are achievable by better modelling tools, able to deal with more complex configurations, and by more refined techniques of fabrication and of integration in technological systems, like wireless communications. Several chapters of this book deal with modelling and fabrication techniques for microdevices, including unconventional phenomena and configurations. But this is far from exhausting the research lines in acoustics. Theoretical analyses and modelling techniques are presented, for phenomena ranging from the detection of cracks to the acoustics of the oceans. Measurement methods are also discussed, which probe by acoustic waves the properties of widely different systems.




Failure Analysis - Structural Health Monitoring of Structure and Infrastructure Components


Book Description

Failure Analysis - Structural Health Monitoring of Structure and Infrastructure Components is a collection of chapters written by academicians, researchers, and practicing engineers from all over the world. The chapters focus on some developments as well as problems in structural health monitoring (SHM) in civil engineering structures and infrastructures. The book covers a variety of multidisciplinary topics, including SHM, risk analysis, seismic analysis, and various modeling and simulation methodologies. This book is an excellent resource for undergraduate and postgraduate students, academics, and researchers across a wide variety of engineering disciplines, as well as for practicing engineers and other professionals in the engineering industry.