Pressure and Temperature Sensitive Paints


Book Description

Luminescent molecule sensors, called pressure-sensitive paint (PSP) and temperature-sensitive paint (TSP), measure factors essential for understanding the aerodynamic performance and heat transfer characteristics of flight vehicles. They provide a powerful tool for experimental aerodynamicists to obtain a deeper understanding of the rich physical phenomena in complex flows around a flight vehicle. This book helps the reader to understand the physics and chemistry and the capabilities of PSP and TSP. It provides an overview of the wide scope of applications and explains the system requirements for using these sensors. The book also includes an extensive table of properties of PTP and TSP. As such, it is a thorough and up-to-date coverage of the underlying physics and applications of luminescent molecules designed for global pressure and temperature mapping




Springer Handbook of Experimental Fluid Mechanics


Book Description

Accompanying DVD-ROM contains ... "all chapters of the Springer Handbook."--Page 3 of cover.







The Virtual Fields Method


Book Description

The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-field Deformation Measurements is the first and only one on the Virtual Fields Method, a recent technique to identify materials mechanical properties from full-field measurements. It contains an extensive theoretical description of the method as well as numerous examples of application to a wide range of materials (composites, metals, welds, biomaterials etc.) and situations(static, vibration, high strain rate etc.). Finally, it contains a detailed training section with examples of progressive difficulty to lead the reader to program the VFM. This is accompanied with a set of commented Matlab programs as well as with a GUI Matlab based software for more general situations.




AIAA Journal


Book Description




Shock Wave-Boundary-Layer Interactions


Book Description

Shock wave-boundary-layer interaction (SBLI) is a fundamental phenomenon in gas dynamics that is observed in many practical situations, ranging from transonic aircraft wings to hypersonic vehicles and engines. SBLIs have the potential to pose serious problems in a flowfield; hence they often prove to be a critical - or even design limiting - issue for many aerospace applications. This is the first book devoted solely to a comprehensive, state-of-the-art explanation of this phenomenon. It includes a description of the basic fluid mechanics of SBLIs plus contributions from leading international experts who share their insight into their physics and the impact they have in practical flow situations. This book is for practitioners and graduate students in aerodynamics who wish to familiarize themselves with all aspects of SBLI flows. It is a valuable resource for specialists because it compiles experimental, computational and theoretical knowledge in one place.




Unsteady Transonic Aerodynamics


Book Description

This volume complements Transonic aerodynamics (v.81 in the series) which is concerned with steady flow. This is the only book to address the subject of unsteady transonic aerodynamics, a field much different from steady aerodynamics. The most pronounced difference is the complex shock wave motions




Low-Speed Wind Tunnel Testing


Book Description

A brand-new edition of the classic guide on low-speed wind tunnel testing While great advances in theoretical and computational methods have been made in recent years, low-speed wind tunnel testing remains essential for obtaining the full range of data needed to guide detailed design decisions for many practical engineering problems. This long-awaited Third Edition of William H. Rae, Jr.'s landmark reference brings together essential information on all aspects of low-speed wind tunnel design, analysis, testing, and instrumentation in one easy-to-use resource. Written by authors who are among the most respected wind tunnel engineers in the world, this edition has been updated to address current topics and applications, and includes coverage of digital electronics, new instrumentation, video and photographic methods, pressure-sensitive paint, and liquid crystal-based measurement methods. The book is organized for quick access to topics of interest, and examines basic test techniques and objectives of modeling and testing aircraft designs in low-speed wind tunnels, as well as applications to fluid motion analysis, automobiles, marine vessels, buildings, bridges, and other structures subject to wind loading. Supplemented with real-world examples throughout, Low-Speed Wind Tunnel Testing, Third Edition is an indispensable resource for aerospace engineering students and professionals, engineers and researchers in the automotive industries, wind tunnel designers, architects, and others who need to get the most from low-speed wind tunnel technology and experiments in their work.







Luminescence Thermometry


Book Description

Luminescence Thermometry: Methods, Materials, and Applications presents the state-of-the art applications of luminescence thermometry, giving a detailed explanation of luminescence spectroscopic schemes for the read-out of temperature, while also describing the diverse materials that are capable of sensing temperature via luminescence. Chapters cover the fundamentals of temperature, traditional thermometers and their figures of merit, a concise description of optical thermometry methods, luminescence and instrumentation, and an explanation of the ways in which increases in temperature quench luminescence. Additional sections focus on materials utilized for luminescence thermometry and the broad range of applications for luminescence thermometry, including temperature measurement at the nanoscale and the application of multifunctional luminescent materials. - Provides an overview of luminescence thermometry applications, including high-temperature, biomedical, nanoscale and multifunctional - Delves into luminescence thermometry by materials group, including Rare-earth and transition Metal Ion Doped, Semiconductors, Quantum Dots and Organic materials - Gives a concise introduction of the latest methods of temperature measurement, including luminescence spectroscopic schemes and methods of analysis